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Using DNA sequencing data to quantify T cell 
fraction and therapy response

Robert Bentham1,2,52, Kevin Litchfield2,3,52, Thomas B. K. Watkins4,52, Emilia L. Lim2,4, 
Rachel Rosenthal4, Carlos Martínez-Ruiz1,2, Crispin T. Hiley2,4, Maise Al Bakir4, 
Roberto Salgado5,6, David A. Moore2,7,8, Mariam Jamal-Hanjani2,8,9, TRACERx Consortium*, 
Charles Swanton2,4,8 & Nicholas McGranahan1,2 ✉

The immune microenvironment influences tumour evolution and can be both prognostic 
and predict response to immunotherapy1,2. However, measurements of tumour infiltrating 
lymphocytes (TILs) are limited by a shortage of appropriate data. Whole-exome sequencing 
(WES) of DNA is frequently performed to calculate tumour mutational burden and identify 
actionable mutations. Here we develop T cell exome TREC tool (T cell ExTRECT), a method 
for estimation of T cell fraction from WES samples using a signal from T cell receptor 
excision circle (TREC) loss during V(D)J recombination of the T cell receptor-α gene (TCRA 
(also known as TRA)). TCRA T cell fraction correlates with orthogonal TIL estimates and is 
agnostic to sample type. Blood TCRA T cell fraction is higher in females than in males and 
correlates with both tumour immune infiltrate and presence of bacterial sequencing reads. 
Tumour TCRA T cell fraction is prognostic in lung adenocarcinoma. Using a meta-analysis of 
tumours treated with immunotherapy, we show that tumour TCRA T cell fraction predicts 
immunotherapy response, providing value beyond measuring tumour mutational burden. 
Applying T cell ExTRECT to a multi-sample pan-cancer cohort reveals a high diversity of the 
degree of immune infiltration within tumours. Subclonal loss of 12q24.31–32, encompassing 
SPPL3, is associated with reduced TCRA T cell fraction. T cell ExTRECT provides a 
cost-effective technique to characterize immune infiltrate alongside somatic changes.

Checkpoint inhibitors (CPIs) have emerged as revolutionary cancer treat-
ments, acting to release the brakes on the immune system3,4. The clinical 
response to CPI therapy, however, is not universal5 and is principally gov-
erned by the presence of an immune stimulus, such as neoantigens, and an 
immune response, mediated by T cells2. Although neoantigens can be pre-
dicted from WES1, T cell quantification has to date required additional bio-
logical material, time and expertise, adding to the cost of immunotherapy.

Here we propose a method for the estimation of the T cell fraction pre-
sent in a WES sample. This method makes use of a signal based on somatic 
copy number from V(D)J recombination and the loss of TRECs. We explore 
the underlying features that predict T cell infiltration in tumours and blood 
and evaluate determinants of immune heterogeneity within tumours. 
Finally, we demonstrate that our estimated T cell fraction can be used as 
a predictor of clinical response to CPI therapy.

Results
Inferring T cell fraction from WES data
T cell diversity, which is required for immune system recognition of for-
eign antigens, is a product of V(D)J recombination, in which segments 

within the T cell receptor genes recombine. The α-chain of the T cell 
receptor is encoded by the TCRA gene, and the result of V(D)J recom-
bination is the excision of unselected gene segments from TCRA as 
TRECs—TCRA thus undergoes a deletion event within T cells.

Tools to infer cancer somatic copy number alteration (SCNA)6–9 rely on 
the read-depth ratio (RDR), reflecting the log of the ratio of reads between 
the tumour sample and its matched control (for example, buffy coat in a 
centrifuged blood sample). Deviation in the RDR from zero is assumed 
to reflect a tumour SCNA. However, this assumption does not hold for 
TCRA; a deviation in the RDR may reflect T cell-specific deletion events, 
and SCNA tools may thus erroneously infer tumour SCNA. Indeed, in the 
TRACERx100 cohort, multiple SCNAs within TCRA were inferred in 165 out 
of 327 tumour samples (Extended Data Fig. 1a). The RDR had the highest 
deviation from zero within segments frequently included within TRECs 
(Extended Data Fig. 1b, c). This suggests that most detected SCNAs within 
TCRA reflect a signal of relative T cell content rather than cancer SCNAs.

To exploit this signal to quantify T cell content we developed T cell 
ExTRECT, which uses a modified RDR within TCRA to directly quan-
tify T cell infiltrate in WES samples (Fig. 1a), referred to as the TCRA 
T cell fraction. Unlike scores derived from RNA-sequencing (RNA-seq) 
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data, the TCRA T cell fraction represents a direct quantification of the 
proportion of T cells within a sample. TCRA T cell fraction was not 
dependent on whether samples were freshly frozen or formalin-fixed 
paraffin-embedded (FFPE) (Methods, Extended Data Fig. 1d, e). Thus, 
T cell ExTRECT can be applied to any WES sample, thereby enabling 
analysis of the T cell fraction in both tumour and blood samples.

Validation of TCRA T cell fraction
To evaluate the accuracy of T cell ExTRECT, we used five orthogonal 
approaches.

First, to assess the ability to accurately determine the presence or 
absence of T cells within a sample, we used WES data from cell lines 
originating from T cell lymphoma ( JURKAT, PEER and HPB-ALL) and 14 
colorectal cancer cell lines derived from HCT116 with varying degrees 
of genomic complexity10,11. All HCT116 cell lines had a calculated frac-
tion of 0. Conversely, the three cell lines derived from T cell lymphoma 
had scores close to 1 (between 0.95 and 0.96) (Extended Data Fig. 1f).

Second, we used an alternative DNA-based method of inferring 
immune content12, based on the number of reads that align to the 
complementarity-determining region 3 (CDR3) following V(D)J 
recombination (Methods, ‘Calculation of CDR3 V(D)J score’). In the 
TRACERx10013 cohort (Extended Data Fig. 1g) we observed a significant 
positive correlation between TCRA T cell fraction and the CDR3 V(D)
J score (ρ = 0.36, P = 1.4 × 10−13; Extended Data Fig. 1h). However, the 
CDR3 V(D)J score was constrained by sequencing depth; the number 
of reads aligning to the CDR3 region was typically very low (1st quartile, 
0; median, 2; mean, 2.335; 3rd quartile, 3; maximum, 14).

Third, we simulated next generation sequencing data with a range of 
T cell fractions (Extended Data Fig. 2a–d). We observed a highly significant 
relationship between simulated and calculated T cell fraction (ρ = 0.99986, 
P < 2.2 × 10−16; Extended Data Fig. 2b). Using downsampling and simula-
tions, we found that the TCRA T cell fraction estimates remained consistent 
at coverage above and including 30× (ρ = 0.84, P = 1.4 × 10−14) (Extended 
Data Fig. 2e, f). By contrast, the results from the CDR3 method were heavily 
skewed by sequencing coverage—when selecting the five samples with the 
highest CDR3 coverage and downsampling to 50×, only one sample with 
3 or more CDR3 reads was detected (Extended Data Fig. 2g).

Fourth, to further confirm the accuracy of the TCRA T cell frac-
tion for quantifying T  cells, we evaluated its association with 
histopathology-derived TIL scores from samples stained with hae-
matoxylin and eosin. Selecting the subset of tumour samples with 
both RNA-seq data and histopathology-derived TIL scores (147 sam-
ples), we evaluated how the TCRA T cell fraction, CDR3 V(D)J score, 
and six RNA-seq-based immune measures for CD8+ cells (Danaher14, 
Davoli15, xCell16, TIMER17, CIBERSORT18 and EPIC19) compared with 
histopathology-derived TIL scores (Fig. 1b). The Danaher CD8+ score 
had the strongest association (ρ = 0.49), followed by the TCRA T cell frac-
tion (ρ = 0.41), Davoli (ρ = 0.4), xCell (ρ = 0.36), CIBERSORT (ρ = 0.23), 
TIMER (ρ = 0.2), CDR3 V(D)J score (ρ = 0.2) and EPIC (ρ = 0.082).

Finally, the TCRA T cell fraction from WES was compared directly with 
RNA-seq methods, and was found to have a significant positive relation-
ship with multiple immune scores1,14–19 with the strongest associations 
being found for T cell-related scores (Fig. 1c).

Determinants of T cell content in blood
We next explored the key determinants of T cell immune infiltrate in 
matched control blood WES samples.

Within the TRACERx10013 cohort, the blood TCRA T cell fraction was sig-
nificantly higher in females than males (P = 0.0057, effect size (ES) = 0.28; 
Fig. 2a) and we observed a trend for higher blood T cell fraction in patients 
with lung squamous cell carcinoma (LUSC) compared with those with lung 
adenocarcinoma (LUAD) (P = 0.066, ES = 0.19; Extended Data Fig. 3a). 
We also observed a significant positive relationship between the blood 
TCRA T cell fraction and matched tumour TCRA T cell fraction (ρ = 0.42, 
P = 1.7 × 10−5; Fig. 2a). These data suggest that tumour immune infiltrate 
may influence T cell levels in circulating blood or vice versa. We observed 
broadly consistent results from LUAD and LUSC The Cancer Genome Atlas 
(TCGA) cohorts20,21 (Extended Data Fig. 3b, c).

To further examine the determinants of blood T cell fraction, we 
explored WES samples derived from both blood and physiologically 
normal oesophagus epithelial (PNE) tissue from a previous study22. 
Although blood samples exhibited a wide range of TCRA T cell fraction 
levels, the majority of PNE tissue had no detectable T cell infiltration 
(Extended Data Fig. 3d, e). Dividing the PNE samples by presence of 
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T cell infiltration revealed a significant association with blood TCRA 
T cell fraction (P = 0.021, ES = 0.29; Fig. 2b). Therefore, similar to tumour 
samples, high levels of T cell infiltration in normal tissue may influence 
or be influenced by the TCRA T cell fraction observed in blood. In a linear 
model predicting T cell fraction in blood, only the infiltration level in 
normal tissue was significant (Extended Data Fig. 3f); no genomic fac-
tors, such as normal tissue mutation burden or driver mutation status 
were predictive of T cell infiltration in PNE tissue (Extended Data Fig. 3g).

Viral or bacterial infections could also influence T cell levels in blood. 
To explore this we obtained normalized estimates for the abundance 
of microbial reads from blood and tumour samples from the LUAD and 
LUSC TCGA cohorts23. Blood samples with elevated microbial reads 
(above the median of 6.81) had significantly higher blood TCRA T cell 
fractions (P = 0.00092, ES = 0.31, Wilcoxon test; Fig. 2c,). No corre-
sponding association was identified in tumour samples (Extended Data 
Fig. 3h). No specific virus or bacteria were associated with the blood 

TCRA T cell fraction. In tumour samples, significant associations for 
bacteria of the genus Williamsia in LUAD (ρ = −0.17, P = 0.00011, false 
discovery rate (FDR) P = 0.013) and Paeniclostridium in LUSC (ρ = −0.2, 
P = 0.00013, FDR P = 0.015) were observed (Extended Data Fig. 3i–k). 
Both had higher normalized log counts per million (logCPM) values 
when TCRA T cell fraction was lower, suggesting that they may be oppor-
tunistic species exploiting an immune-cold tumour microenvironment.

Determinants of tumour T cell content
Next, we investigated factors influencing T cell infiltrate in tumour tissue. 
We used our recently published pan-cancer cohort of multi-sample data24 
to investigate both the extent and possible genomic basis for immune 
infiltrate heterogeneity. In total, we evaluated T cell infiltrate in 731 sam-
ples from 178 tumours of 12 cancer types (Extended Data Fig. 4a, b).

We classified each multi-sample tumour as uniformly hot (all sam-
ples ≥ 0.11, the mean TCRA T cell fraction), uniformly cold (all sam-
ples < 0.11) or heterogeneous. There was a significant difference in 
the proportion of these categories by cancer type (chi-squared test: 
P = 1.62 × 10−7; Fig. 2d,) with oestrogen receptor-positive (ER+) breast 
cancer (BRCA) tumours being the most heterogeneous (83%) and LUSC 
tumours being the least heterogeneous (22%). Clear differences in the 
prevalence and heterogeneity of immune infiltrate were observed 
across cancer types; for instance, while bladder cancer (BLCA) and 
LUAD showed similar numbers of heterogeneous tumours (36% versus 
37%), about 64% of BLCA tumours were uniformly immune-hot and 
0% were uniformly immune-cold, whereas in LUAD, 37% of tumours 
were uniformly immune-cold and 25% were uniformly immune-hot. 
This suggests that for certain cancer types there is a highly localized 
immune infiltrate, which can be subject to considerable sampling bias.

Next, we examined the relationship between SCNAs and immune 
diversity. We restricted the analysis to tumours for which there were 
at least three samples and a heterogeneous mixture of T cell infiltrate. 
Pairwise SCNA heterogeneity between any two samples was calcu-
lated as the sum of the proportion of the genome with unique SCNAs 
in either sample. Pairs of tumour samples with a large disparity in the 
TCRA T cell fraction (greater than or equal to the mean of all pairwise 
distances, 0.065) were associated with a larger differences in SCNA 
heterogeneity compared with matched-sample pairs with low TCRA 
T cell fraction heterogeneity (all events: P = 0.0025, ES = 0.347; gain 
events: P = 0.0056, ES = 0.318; loss or loss of heterozygosity (LOH) 
events: P = 0.028, ES = 0.253, n = 76; Fig. 2e).

To explore whether any specific subclonal SCNAs were associated 
with immune depletion or activation, we identified cytobands that were 
subclonally lost or gained in more than 30 tumours in the pan-cancer 
multi-sample cohort (Extended Data Fig. 4c) and investigated whether 
specific SCNAs were associated with changes in TCRA T cell fraction. 
Subclonal loss of 12q24.31–32 was found to be significantly associated 
with decreased TCRA T cell fraction (P = 5.9 × 10−6, ES = 0.75; Fig. 2f).

RNA-seq analysis of the TRACERx100 cohort identified SPPL3 as exhib-
iting the most significant differential expression between samples with 
and without subclonal 12q24.31–32 loss (Extended Data Fig. 4d). The 
absence of SPPL3 has been found to augment B3GNT5 enzyme activity, 
which upregulates cell surface glycosphingolipids that, in turn, impede 
class I HLA function and diminish CD8+ T cell activation25. Thus, these 
data suggest that subclonal loss of 12q24.31, encompassing SPPL3, may 
be selected in tumour evolution across cancer types (occurring in 18.7% 
of tumours within the cohort) as a mechanism of immune evasion.

T cell fraction is prognostic in LUAD
To explore the clinical utility of T cell ExTRECT, we considered whether 
the TCRA T cell fraction was prognostic in the TRACERx100 non-small 
cell lung cancer (NSCLC) cohort13. We categorized tumour samples as 
either hot or cold depending on whether the TCRA T cell fraction was 
greater than or equal to the mean in the cohort (0.081). In LUAD, we 
observed that patients harbouring an elevated number of immune-cold 
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tumour samples were associated with significantly inferior prognosis 
(LUAD: ≥2 immune-cold  samples, hazard ratio (HR) = 3.1, P = 0.0063, 
log-rank test; LUAD: ≥3 immune-cold samples, HR = 7.3, P = 0.00024, 
log-rank test; Fig. 3). By contrast, in patients with LUSC, there was no 
significant difference in survival. Using the median (0.074) as a threshold 
for immune hot or cold samples yielded similar results (Extended Data 
Fig. 5a). These results are consistent with previous analysis based on TIL 
scores inferred from computational pathology on the TRACERx100 
cohort26. An association between the high TCRA T cell fraction and 
positive outcome was also observed in the TCGA LUAD cohort (overall 
survival: HR = 0.61, P = 0.0043; progression free survival: HR = 0.67, 
P = 0.016; Extended Data Fig. 5b), but not in the TCGA LUSC cohort 
(Extended Data Fig. 5c). A range of possible thresholds yielded similar 
results (Extended Data Fig. 5d).

Consistent with the importance of the tumour sample with the lowest 
immune infiltrate26, the minimum, but not the maximum or mean, TCRA 
T cell fraction across tumour samples was prognostic in the TRACERx100 
cohort. Other continuous measures, such as a TCRA T cell fraction diver-
gence between tumour sample score (LUAD: HR = 2.2, P = 0.023, log-rank 
test; Extended Data Fig. 5d) and a model combining both the minimum 
and maximum scores (LUAD and LUSC: minimum HR = 0.5, P = 0.005, 
maximum HR = 1.5, P = 0.061; LUAD: minimum HR = 0.36, P = 0.016, maxi-
mum HR = 2.52, P = 0.029; Extended Data Fig. 5e) reached significance, 
suggesting that there is added predictive potential when considering 
the heterogeneity of the TCRA T cell fraction.

T cell fraction and response to CPIs
To further explore the clinical utility of T cell ExTRECT, we evaluated 
its ability to predict clinical response to CPIs. The CPI1000+ cohort2 
consists of 1,070 CPI-treated tumours receiving either anti-CTLA-4, 
anti-PD-L1 or anti-PD-1 therapy across eight main cancer types 
(Extended Data Fig. 6a, b). A responder was defined as a patient showing 
a complete or partial response, whereas a non-responder was defined 
as a patient exhibiting stable or progressive disease, as determined on 
the basis of imaging by RECIST criteria27.

Consistent with the importance of T cells in influencing the response 
to CPIs, we observed a significantly higher (P = 2.3 × 10−7, ES = 0.17; Fig. 4a) 
tumour TCRA T cell fraction in responders. Similarly, immune-cold 

tumours (tumours with TCRA T cell fraction below 0.018, the median 
TCRA T cell fraction) were significantly enriched for non-responders 
(odds ratio (OR) = 2.14, P = 1.33 × 10−6, Fisher’s exact test; Fig. 4b).

Separating the cohort by the medians for both clonal tumour 
mutational burden (TMB) and TCRA T cell fraction revealed that the 
association between TCRA T cell fraction and clinical response was 
independent of clonal TMB (Fig. 4b).

To evaluate the utility of T cell ExTRECT in comparison to RNA-seq-based 
measurements, we selected all studies with at least 10 samples from a 
cancer type with both RNA-seq and TCRA T cell fractions for univariate 
meta-analyses (557 patients across 7 studies and 5 cancer types; Fig. 4c). 
TCRA T cell fraction (OR = 1.39, P = 0.00858), clonal TMB (OR = 1.59, 
P = 6.021 × 10−5) and CD8A expression (OR = 1.45, P = 0.0004479) were all 
significantly associated with the response to CPIs.

To assess whether tumour TCRA T cell fraction improves prediction 
of the response to CPIs beyond clonal TMB and to a greater extent than 
CD8A expression, we evaluated different linear models (Extended Data 
Fig. 6c). Only the clonal TMB plus TCRA model was significantly bet-
ter compared with clonal TMB alone (P = 0.0028, receiver operating 
characteristic test; general linear model (GLM): clonal TMB plus TCRA, 
area under the curve (AUC) = 0.68; GLM: clonal TMB, AUC = 0.62). When 
examining the significance of the variables in all models, TCRA T cell 
fraction was more significant than CD8A (GLM: clonal TMB plus TCRA, 
P = 4.62 × 10−5; GLM: clonal TMB plus CD8A, P = 0.000431), and when 
combined into a multivariable model, TCRA T cell fraction remained 
significant, but CD8A expression did not (TCRA, P = 0.00601; CD8A, 
P = 0.06246).

Finally, we assessed the predictive potential of the TCRA T cell frac-
tion in a combined NSCLC CPI cohort (Extended Data Fig. 6d, e) lacking 
any RNA-seq immune measures. In univariate analyses (Fig. 4d), TCRA 
T cell fraction (OR = 1.44, P = 0.0071) and blood TCRA T cell fraction 
(OR = 1.39, P = 0.015) were significantly associated with response to 
CPI. The tumour TCRA T cell fraction had OR values greater than one 
in two out of three cohorts, whereas the blood TCRA T cell fraction had 
OR values greater than one in all three cohorts.

Together, these results suggest that the TCRA T cell fraction can be 
used as a substitute for RNA-seq measures of CD8+ infiltrate and that 
TCRA T cell fraction estimation adds prognostic value to TMB estimates.

Discussion
In summary, we present T cell ExTRECT, a method by which DNA WES 
can be harnessed to study the immune microenvironment. T cell 
ExTRECT provides an accurate estimate of immune infiltrate that 
shows clinical utility. We find that tumour TCRA T cell fraction is prog-
nostic in LUAD and validate this in the TCGA LUAD cohort. Relatedly, 
we find the TCRA T cell fraction is associated with response to CPI in a 
pan-cancer cohort and improves upon the predictive value of clonal 
TMB. T cell ExTRECT enables the T cell fraction to be calculated in any 
WES sample. Using this information, we demonstrate that the T cell 
fraction in blood is heterogeneous, associated with microbial infec-
tions and significantly higher in females than males in TRACERx100 
data from patients with NSCLC, consistent with previous findings28,29. 
Our analysis of blood samples in the lung CPI cohort revealed that 
the blood TCRA T cell fraction is predictive of the response to immu-
notherapy.

The T cell ExTRECT method has limitations. Although the tool 
quantifies the proportion of T cells in a sample, it cannot distinguish 
neoantigen-reactive T cells from bystander T cells, and is unable to 
detect clonotypes. Further, T cell ExTRECT loses fidelity at sequencing 
depths of less than 30×. Nevertheless, this relatively low sequencing 
depth means that it should be applicable to most DNA-sequencing 
datasets. T cell ExTRECT has so far been optimised only for WES, but 
further work will extend the method to whole-genome sequencing 
and to other species, including widely studied model organisms. T cell 
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ExTRECT has clear applications in the immuno-oncological exploration 
of tumour samples, however it could also be used in a wider clinical 
setting, such as screening for severe combined immunodeficiency 
disease in newborns30.

In summary, T cell ExTRECT could have important applications in 
both basic and translational research by providing a cost-effective 
technique to characterize immune infiltrate alongside somatic changes 
without the need for RNA-seq analysis.
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Methods

A full description of the T cell ExTRECT method is given in Supplementary  
Information.

Statistics
All statistical tests were performed in R 3.6.1. No statistical methods were 
used to predetermine sample size. Tests involving correlations were 
done using stat_cor from the R package ggpubr (v0.4.0) with the Spear-
man’s method. Tests involving comparisons of distributions were done 
using stat_compare_means using wilcox.test using either the unpaired 
option, performing a Wilcoxon rank-sum (Mann–Whitney U) test, or a 
paired Wilcoxon signed-rank test. Effect sizes for the corresponding 
Wilcoxon tests were measured using the wilcox_effsize function from 
the rstatix package (v0.6.0). Hazard ratios and P values were calculated 
with the survival package (v3.2–3) for both Kaplan–Meier curves and 
the Cox proportional hazard model. For all statistical tests, the number 
of data points included are plotted or annotated in the corresponding 
figure. Plotting and analysis in R also made use of the ggplot2 (v3.3.3), 
dplyr (v1.0.4), tidyr (v1.1.1), gridExtra (v2.3) and gtable (v0.3.0) packages.

Fresh frozen versus FFPE samples
To test that the TCRA T cell fraction was reliable and consistent for both 
fresh frozen and formalin-fixed paraffin-embedded (FFPE) samples, the 
non-GC-corrected TCRA T cell fractions were calculated for six different 
studies within the CPI1000+ cohort. Three of these studies used WES 
derived from FFPE tissues (n = 460), while the other three utilised WES 
samples derived from fresh frozen tissue (n = 357).

Fitting a linear model to predict TCRA T cell fraction by histology 
and FFPE status (Extended Data Fig. 1i) revealed that cancer type was 
the main driver of this significance, with FFPE status not being signifi-
cant. Additionally, for melanoma and bladder tumours that had FFPE 
and fresh frozen WES samples, no significant difference was found 
(Extended Data Fig. 1f). This led us to conclude that whether a WES 
sample is derived from fresh frozen or FFPE tissue does not significantly 
affect the values of the TCRA T cell fraction calculated by T cell ExTRECT.

Calculation of CDR3 V(D)J scores
The procedure outlined in Levy et al.12 was followed to calculate the  
CDR3 V(D)J scores. First reads aligning to TCRB (hg19:chr7:142000817- 
142510993) and unaligned reads were extracted with samtools.  
This resulting bam file was converted to fastq using bedtools and then 
the tool IMSEQ (v1.1.0)31 was used on the resulting output to identify 
V(D)J recombinant reads aligning to the CDR3 region, the number of 
aligned reads was then normalized by the total number of reads in 
the original bam file (as measured by samtools flagstat) to create the 
CDR3 V(D)J scores.

Kraken TCGA analysis
Pre-processed microbiome data output from the Kraken32 analysis 
performed by Poore et al.23 was downloaded from ftp://ftp.microbio.
me/pub/cancer_microbiome_analysis/.

To create the high and low Kraken microbiome groups for both 
the blood and tumour samples, the file Kraken-TCGA-Voom-SNM- 
Most-Stringent-Filtering-Data.csv containing normalised logCPM values 
was downloaded. For each sample, the rows were summed giving an 
overall ‘microbiome’ score. The samples were then divided into high 
and low groups based on the median of this score.

To investigate the role of any individual microbial species in influ-
encing TCRA T cell fraction, a reduced list of the species from the 
Kraken-TCGA-Voom-SNM-Most-Stringent-Filtering-Data.csv file was 
selected by removing all species with less than 1,000 total raw reads 
in the TCGA LUAD and LUSC cohort as called from the raw data file 
Kraken-TCGA-Raw-Data-17625-Samples.csv. This left a total of 59 micro-
bial species that were individually tested for association with TCRA 

T cell fraction using Spearman’s correlation for both LUAD and LUSC 
blood and tumour samples.

Patients from TRACERx100
The first 100 patients prospectively analysed by the NSCLC TRACERx 
study (https://clinicaltrials.gov/ct2/show/NCT01888601, approved 
by an independent research ethics committee, 13/LO/1546) were used 
in this study. This is identical to the 100-patient cohort originally 
described in Jamal-Hanjani et al.13.

In brief, informed consent was a mandatory requirement for entry 
into the TRACERx study. This NSCLC cohort consisted of 68 males and 
32 females with a median age of 68. Finally, the cohort was predomi-
nantly made up of early-stage tumours (Ia (26), Ib (36), IIa (13), IIb (11), 
IIIa (13) and IIIb (1)) and 28 patients also had adjuvant therapy.

TRACERx100 WES and RNA-seq samples
Both WES (aligned to the hg19 sequence) and RNA-seq samples were 
obtained from the TRACERx study for the first 100 patients; the method 
for processing these samples is as previously described13. Notably, 
for the WES samples, exome capture was performed using a custom 
version of Agilent Human All Exome V5 kit according to the manufac-
turer’s instructions.

TCGA LUAD and LUSC cohorts
Aligned BAM files (hg38 sequence) from the TCGA LUAD and LUSC 
cohorts were downloaded from the genomic data commons (dataset 
ID: phs000178.v10.p8). Sample purity and ploidy calls were gener-
ated from ASCAT (v2.4.2) from a previous analysis of the TCGA data33.  
In short, Affymetrix SNP6 profiles from paired tumour-normal samples 
(dataset ID: phs000178.v10.p8) were processed by PennCNV libraries34 
to obtain BAFs and log ratios which were GC-corrected before being 
processed with ASCAT6.

Cancer cell line data
The non-T cell derived colorectal cancer cell lines HCT116 were 
sequenced with Illumina HiSeq 2500 and aligned with bwa mem using 
hg19 as described in López et al.10. The T cell-derived cell lines were 
from the dataset described in Ghandi et al.11 and downloaded from the 
Sequence Read Archive (SRA) under accession number PRJNA523380. 
Cell lines derived from T cells were chosen ensuring that any cell line 
derived from precursor T cell acute lymphoblastic leukemia were 
excluded as these have not undergone V(D)J recombination. This 
process led to WES data from three cell lines being chosen: JURKAT, 
HPB-ALL and PEER.

Owing to the difficulty of running ASCAT without matching germline 
samples, the naive TCRA T cell fraction was used for all cell line work.

Multi-sample tumour cohort of patients
The multi-sample pan-cancer cohort (Extended data Fig. 4b) was cre-
ated by combining the TRACERx cohort with a subset of the cohort 
presented recently by Watkins et al.24. Tumours were included if they 
had at least two samples sequenced in the primary tumour for which it 
was possible to calculate the TCRA T cell fraction using T cell ExTRECT. 
The final cohort therefore consisted of a multi-sample primary tumour 
dataset with the addition of any metastasis samples that were also 
sequenced for these patients.

Besides TRACERx100 the following datasets were combined 
into the final multi-sample pan-cancer cohort: (1) Brastianos 
et al.35—a cohort focused on studying brain metastasis originat-
ing from different histologies, only tumours with multi-sample 
primary samples from this cohort were included; (2) Gerlinger 
et al.36,37—a multi-sample primary cohort of patients with KIRC; 
(3) Harbst et  al.38—a multi-region primary cohort of patients 
with SKCM; (4) Lamy et  al.39—a multi-sample primary cohort  
of patients with BLCA; (5) Savas et al.40—a multi-sample cohort of 
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patients with ER+ and triple-negative BRCA (BRCA ER+ and TNBC);  
(6) Suzuki et  al.41—a multi-sample primary cohort of glioma;  
(7) Turajlic et al42—a multi-sample primary cohort of KIRC; and  
(8) Messaoudene et al.43—a multi-sample primary cohort of patients 
with HER2+ and ER+ BRCA.

Selection of samples for multi-sample sequencing in different 
datasets
In all of the multi-sample cohorts samples were selected though by dif-
ferent methods (see associated publications) with two main criteria in 
mind, first that tumour content be maximized at the expense of stromal 
content in order to assure good quality mutation and copy-number 
analysis for the main goal of the genomic analysis, and second, that each 
sample represents a physically separate and distinct part of the tumour. 
In cases where these were not at separate sites, different measures were 
used. In the TRACERx100 cohort, for example, samples sequenced 
were a minimum of 3 mm apart.

Identification of gain, loss and LOH events in a pan-cancer 
multi-sample cohort
Analysis of whole-exome sequencing was performed as described13. 
Copy-number segmentation, tumour purity and ploidy for each sample 
were estimated using ASCAT6 as described previously13. These data were 
used as input to a multi-sample SCNA-estimation approach to produce 
genome-wide estimates of the presence of loss of heterozygosity as well 
as loss, neutral, gain and amplification copy-number states relative to 
sample ploidy. The log ratio values present in each copy-number segment 
with ≥5 log ratio values in all samples of a tumour were examined relative 
to three sample-ploidy-adjusted log ratio thresholds using one-tailed 
t-tests with a P < 0.01 threshold. These log ratio thresholds were equiva-
lent to <log2[1.5/2] for losses, >log2[2.5/2] for gains in a diploid tumour. 
Any segment not classified as a loss or gain were classed as neutral. For 
each segment, these relative to ploidy definitions were combined with 
loss of heterozygosity detection across all samples from a single tumour.

Pairwise subclonal SCNA scores
To calculate pairwise subclonal SCNA measures, the classifications 
outlined in the previous methods section were used to create three 
groups of pairwise subclonal SCNA scores. First, we considered any 
segment affected by any of gain or loss relative to ploidy or LOH as 
aberrant and compared each pair of samples from a single patient’s 
disease, classifying aberrant areas as clonal if aberrant in both samples 
or subclonal if aberrant in only one sample. This same process was 
repeated for gains relative to ploidy alone and then losses relative to 
ploidy and LOH considered together.

Cytoband-level SCNA analysis
To enable comparisons across tumours, segments were mapped to 
hg19 cytobands. If multiple segments mapped to a cytoband, the SCNA 
status (gain or loss relative to ploidy) of the segment with the largest 
overlap with the cytoband was chosen.

For the SCNA gain-and-loss analysis, cytoband level events were 
selected if they occurred subclonally across the entire cohort more 
than 30 times. Bands passing this threshold within the same region 
(for example, all cytobands on 1p36) were then grouped together.  
A Wilcoxon paired test was used to assess whether the tumour regions 
within a single patient with the subclonal SCNA events had a significant 
difference in TCRA T cell fraction to those regions without the event.

Selection of multi-sample tumours with heterogeneous immune 
infiltration
To be included a tumour had to have at least 3 samples sequenced and 
meet the following two requirements: (1) have a pair of regions with 
a large change in immune infiltration, defined as having ≥0.065 dif-
ference in TCRA T cell fraction, and (2) have a pair of samples with a 

small or no change in immune infiltration, defined as having <0.065 
difference in TCRA T cell fraction. An example of a tumour matching 
this requirement would be one with three samples R1, R2 and R3 with 
TCRA T cell fractions of 0.01, 0.01 and 0.2, respectively. The R1–R2 pair 
has a difference in TCRA T cell fraction of 0, while the R1–R3 and R2–R3 
pairs would both have a large difference of 0.19. Within the multi-sample 
tumour cohort, 76 patients matched these criteria.

RNA-seq differential gene-expression analysis for patients with 
subclonal 12q24.31–32 loss
Differential gene-expression analysis was performed on the TRAC-
ERx100 patients with RNA-seq data showing subclonal 12q24.31–32 
loss. First, using R 4.0.0, the edgeR package (version 3.32.1) was used for 
sample-specific trimmed mean of the M-values (TMM) normalization; 
any genes with low expression were then filtered out using the standard 
edgeR filtering method before using the Limma–Voom method from 
the limma R package (version 3.46.0) to calculate the Voom fit and 
obtain P-values for the gene-expression differences. The comparison 
controlled for patient and histology as blocking factors and P-values 
were FDR-corrected for multiple testing. Results were then visualised 
with the R EnhancedVolcano package (version 1.8.0).

CPI1000+ meta-analysis of cohorts
The CPI1000+ cohort is fully described in Litchfield et al.2 and con-
tains the following datasets: (1) Snyder et al.44, an advanced melanoma 
anti-CTLA-4-treated cohort; (2) Van Allen et al.45, an advanced mela-
noma anti-CTLA-4-treated cohort; (3) Hugo et al.46, an advanced mela-
noma anti-PD-1-treated cohort; (4) Riaz et al.47, an advanced melanoma 
anti-PD-1-treated cohort; (5) Cristescu et al.48, an advanced melanoma 
anti-PD-1-treated cohort; (6) Cristescu et al.48, an advanced head and 
neck cancer anti-PD-1-treated cohort; (7) Cristescu et al.48 ‘all other 
tumour types’ cohort (from KEYNOTE-028 and KEYNOTE-012 stud-
ies), treated with anti-PD-1; (8) Snyder et al.49, a metastatic urothelial 
cancer anti-PD-L1-treated cohort; (9) Mariathasan et al.50, a metastatic 
urothelial cancer anti-PD-L1-treated cohort; (10) McDermott et al.51,  
a metastatic renal cell carcinoma anti-PD-L1-treated cohort; (11) Rizvi 
et al.52, a NSCLC anti-PD-1-treated cohort; (12) Hellman et al., a cohort 
of NSCLC samples treated with anti-PD-1 used by Litchfield et al.2;  
(13) Le et al.53,a colorectal cancer cohort treated with anti-PD-1 therapy.

Of these studies, Snyder et al.49 was excluded from the analysis 
owing to extremely poor coverage within the TCRA gene. Additionally,  
55 patients were either on treatment at the time of the biopsy or had 
prior treatment with CPIs and were thus removed from the analysis. 
All samples were aligned to hg19 using bwa mem (v0.7.15) with purity 
and SCNA data calculated using ASCAT as described in Litchfield et al.2.

Notably, 953 out of 1,070 samples (89%) had WES data and 888 out of 
1,070 (83%) had sufficient purity and coverage to enable copy number 
estimation, enabling the TCRA T cell fractions to be calculated. Some 
643 out of 1,070 (60%) of these samples had matched RNA-seq data, 
allowing orthogonal assessment of T cell fractions.

For an extension to this dataset, a NSCLC anti-PD-1 treated cohort54 
was added for a specific NSCLC analysis. In this cohort mutations were 
called as either clonal or subclonal using PyClone, as described by 
Litchfield et al.2.

Orthogonal immune measures
RNA-seq signatures. We used the method of Danaher et al.12 as our 
primary method for estimating T cell content from RNA-seq measures, 
as it has previously been demonstrated that this is most strongly cor-
related to TIL scores calculated in TRACERx1. Other RNA-seq signatures 
tested against the TCRA T cell fractions were the Davoli method15, xCell16, 
TIMER17 and EPIC19 and CIBERSORT18.

Histopathology-derived TIL scores. TILs were estimated as previously 
described1 from histopathology slides using internationally established 



guidelines developed by the International Immuno-Oncology Biomark-
er Working Group55. In brief, the relative proportion of stromal area to 
tumour area was determined from a pathology slide of a given tumour 
sample. TILs were reported for the stromal compartment (percent 
stromal TILs). The denominator used to determine the percentage of 
stromal TILs was the area of stromal tissue (that is, the area occupied 
by mononuclear inflammatory cells over the total intratumoral stro-
mal area) rather than the number of stromal cells (that is, the fraction 
of total stromal nuclei that represent mononuclear inflammatory 
cell nuclei). This method has been demonstrated to be reproducible 
among trained pathologists56. An inter-person concordance test was 
performed, and this demonstrated high reproducibility. The Interna-
tional Immuno-Oncology Biomarker Working Group has developed 
a freely available training tool to train pathologists for optimal TIL 
assessment on haematoxylin–eosin slides (www.tilsincancer.org).

Univariate and multivariable model for CPI response. For the univari-
ate model, an adapted procedure2 was followed, with the main difference 
being that only samples with complete data (RNA-seq for CD8A, clonal 
TMB and TCRA T cell fraction) were included. The univariate model 
meta-analysis was conducted using R package meta (version 4.13-0). 
The multivariable model was created with general linear models using 
the function glm from the stats R package using default values. The R 
package ROCR (version 1.0-11) was used for the ROC curve analysis.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The RNA-seq data, WES data and histopathology-derived TIL 
scores (in each case from the TRACERx study) generated, used or 
analysed during this study are not publicly available and restrictions 
apply to the availability of these data. Such RNA-seq, WES data and 
histopathology-derived TIL scores are available through the Cancer 
Research UK and University College London Cancer Trials Centre (ctc.
tracerx@ucl.ac.uk) for academic non-commercial research purposes 
upon reasonable request, and subject to review of a project proposal 
that will be evaluated by a TRACERx data access committee, entering 
into an appropriate data access agreement and subject to any appli-
cable ethical approvals. Details of all other datasets obtained from 
third parties used in this study can be found in Extended Data Table 1. 
Clinical trial information (if applicable) is also available in the associ-
ated publications described in Extended Data Table 1.

Code availability
The code used to produce TCRA T cell fraction scores is available for 
academic non-commercial research purposes at https://github.com/
McGranahanLab/TcellExTRECT. All other code used in the analysis and 
to produce figures is available at https://github.com/McGranahanLa
b/T-cell-ExTRECT-figure-code-2021.
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Extended Data Fig. 1 | Overview and validation of T cell ExTRECT. a, Outline of 
quantification of the TCRA T cell fraction utilising V(D)J recombination and 
TRECs. top: Schematic demonstrating how RDR signals are used to detect 
SCNA gain or loss events in a standard tumour and matched control sample 
analysis. In this analysis cells consist of three distinct cell types: tumour cells, 
T cells and all other stromal cells. bottom: Schematic of how this same process 
works when focussing on the TCRA gene in relation to V(D)J recombination and 
TRECs, the lower right panel indicates an increased number of breakpoints 
detected in the TRACERx100 dataset within the TCRA gene relative to 
surrounding areas of 14q, suggesting that the TREC signal is captured.  
b, c, Plots showing examples of RDR in two TRACERx100 samples 
demonstrating either increased levels of T cell content in blood compared to 
matched tumour (b) or increased levels of T cell content in tumour compared 

to matched blood (c). VDV segments refer to variable segments in both the 
TCRα and TCRδ locus. d, TCRA T cell fraction (non-GC corrected) value for FFPE 
and fresh frozen samples for bladder and melanoma tumours within the 
CPI1000+ cohort (bladder: n = 228, melanoma: n = 297, two sided 
Wilcoxon rank-sum (Mann-Whitney U) test used, boxplot shows lower quartile, 
median and upper quartile values). e, Summary of linear model for prediction 
of non-GC corrected TCRA T cell fraction from histology and FFPE sample 
status within the CPI cohort. f, Pie charts of calculated TCRA T cell fraction from 
WES of either T cell-derived cell lines or non-T cell derived cell lines, all HCT116 
cell lines had calculated fractions < 1 e-15. g, Overview of samples in the 
TRACERx100 cohort. e, Association of the CDR3 V(D)J read score based on the 
iDNA method to TCRA T cell fraction in TRACERx100, error bands represent the 
95% confidence interval of the fitted linear model.



Extended Data Fig. 2 | Accuracy of TCRA T cell fraction by copy number and 
depth. a, Simulated log RDR from a sample consisting of 24% T cells, 75% 
tumour, and 1% non-T cell stroma (TCRA copy number = 1). b, Calculated TCRA 
T cell fraction versus actual T cell fraction value for simulated data c, Difference 
between calculated naive T cell fraction and actual fraction for range of tumour 
purities and local tumour copy number states at the TCRA locus. d, Difference 

between TCRA T cell fraction and actual fraction for a range of local tumour 
copy number to the TCRA locus and tumour purities. e,. Downsampling of  
5 TRACERx100 samples to different depths. f, Downsampling of simulated data 
to different depth levels. g, Downsampling of the 5 TRACERx100 samples that 
with the highest CDR3 read counts to different depths and the resulting CDR3 
read counts.
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Extended analysis on determinants of TCRA T cell 
fraction. a, Association of blood TCRA T cell fraction to histology in 
TRACERx100 (n = 93 LUAD and LUSC patients). b, Predictors of blood TCRA 
T cell fraction in TCGA LUAD and LUSC cohort (left panel: n = 1017, middle 
panel: n = 976, right panel: n = 714). c, Overview of samples in the TCGA LUAD 
and LUSC cohort. d, Summary of mean TCRA T cell fraction in PNE cohort.  
e, Overview plot of PNE cohort containing multi-sample microdissected tissue 
paired with normal blood samples. f, Summary of linear model for predicting 
blood TCRA T cell fraction, PNE infiltration defined as TCRA T cell fraction > 
0.001, ESCC = Oesophageal squamous cell carcinoma, HGD = high grade 
dysplasia. g, Linear model for TCRA T cell fraction in PNE samples from 

genomic factors. h, Association of microbial reads from Kraken with TCRA 
T cell fraction in tumour samples (n = 880). i, -Log10 p-values for 59 microbial 
species tested for association with TCRA T cell fraction in blood and tumour 
sample in LUAD and LUSC. Red line represents the significance threshold at  
P = 0.000423. j, The significant hit Willamsia in LUAD tumours, red dots 
represent samples where reads were detected while blue represent samples 
with no reads detected (n = 501). k, The significant hit Paeniclostridium in  
LUSC tumours (n = 379). All Wilcoxon tests refer to Wilcoxon rank-sum  
(Mann-Whitney U) tests and are two sided. Boxplots represent lower quartile, 
median and upper quartile.
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Subclonal SCNAs and T cell infiltration. a, Overview of 
immune heterogeneity across multi-sample pan-cancer cohort with tumour 
samples ranked by TCRA T cell fraction, upper panel: histogram of entire 
cohort, lower panel: tumour sample grouped by patients with solid horizontal 
lines joining regions from the same patient, each line includes 2 or more 
tumour region and dashed red line is at the mean TCRA T cell fraction in the 
cohort (0.11). b, Overview of patients in the multi-sample pan-cancer cohort.  
c, Lower panel: number of tumours in pan-cancer multi-sample cohort with 
subclonal gains (dark red) or losses (dark blue) across the genome, horizontal 

lines signify the samples which have more than 30 tumours (Methods) with 
subclonal gains or losses. Upper panel: - log10(p-value) of the 160 cytoband 
regions tested for association between TCRA T cell fraction and subclonal gains 
(dark red points) or losses (dark blue points). Red horizontal line marks 
significance threshold, only one region is significant, a loss event on 
chromosome 12q24.31-32. d, Volcano plot for the RNA-seq analysis in the 
TRACERx100 cohort between samples with 12q24.31-32 loss and samples 
without, genes within the locus are labeled, dotted lines at fold change of 0.25 
and adjusted P = 0.05.
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Extended Data Fig 5 | See next page for caption.



Extended Data Fig 5 | Association of TCRA T cell fraction with prognosis.  
a, Kaplan-Meier curves for the multi-sample TRACERx100 cohort for LUAD 
(top) and LUSC (bottom) divided by the number of cold samples in the tumour. 
Immune-hot and immune-cold samples were defined by using the median of all 
the tumour samples (0.0736) as a threshold. In each Kaplan-Meier curve the 
included patients were restricted to those with total samples greater than the 
number of immune-cold samples used in defining the threshold. b, Kaplan-
Meier curves for overall and progression free survival in the TCGA LUAD 
cohort, dividing the cohort into immune-hot and immune-cold groups using 
the mean of the TCGA LUAD cohort (0.109) as a threshold. c, Kaplan-Meier 
curves for the TCGA LUSC, and TCGA LUAD & LUSC cohorts for overall and 
progression free survival using the mean of the TCGA LUAD cohort (0.109) as a 

threshold for distinguishing hot and cold tumours. d, Log2(Hazard ratios) from 
Kaplan-Meier plots for the TCGA separating the tumour samples into immune-
hot and immune-cold based on different thresholds from 0 to 0.16 in steps of 
0.0025 for overall and progression free survival. e, Hazard ratios of separate 
Cox regression models relating disease free survival to different multi-sample 
measures related to the TCRA T cell fraction in the entire TRACERx100 cohort 
as well as the LUAD and LUSC patients separately. TCRA divergence score is 
defined as the maximum divided by the upper 95% confidence interval of the 
minimum. f, Hazard ratios of separate Cox regression models for TCRA T cell 
fraction for the TCGA LUAD and LUSC cohort for both overall survival (OS) and 
progression free survival (PFS).
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Extended Data Fig 6 | Overview of CPI1000+ cohort. a, Cohort overview of the 
CPI1000+ dataset. b, Overview of samples in the CPI1000+ cohort excluding 
Snyder et al.49 and those with prior CPI treatment. c, ROC plot of GLM models 
for predicting CPI response (blue: clonal TMB, red: clonal TMB + TCRA T cell 
fraction, green: clonal TMB + CD8A expression). d, Cohort overview of the CPI 

lung dataset, red lines in upper panel reflect the median TCRA T cell fraction in 
patients with (0.10) or without (0.0070) a response to CPI, note  
that Tumour TCRA T cell fraction particularly in non-responders is often zero.  
e, Overview of patients in the CPI Lung cohort.



Extended Data Table 1 | Original source publications

Original source publications (excluding TRACERx studies) containing the sequencing data 
used in either the multi-sample pan-cancer cohort, PNE cohort or the CPI1000+ cohort. Stud-
ies including lung cancer patients used in the lung CPI cohort are noted.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used to collect data

Data analysis R (version 3.6.1)  
R (version 4.0.0 was used for the RNA-seq differential gene expression analysis) 
samtools (version 1.3.1) 
ART Illumina (version 2.5.8) 
MASCoTE (https://github.com/raphael-group/mascote)  
Picard tools (version 1.107) 
bwa mem (v0.7.15) 
 
R packages used in version 3.6.1: 
ggpubr (version 0.4.0) 
rstatix (version 0.6.0) 
survival (version 3.2.3) 
ggplot2 (version 3.3.3) 
dplyr (version 1.0.4) 
tidyr (version 1.1.1) 
gridExtra (version 2.3) 
gtable (version 0.3.0) 
meta (version 4.13.0) 
ROCR (version 1.0.11) 
EnhancedVolcano (version 1.8.0) 
gratia (version 0.5.1) 
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R packages used in version 4.0.0: 
limma (version 3.46.0) 
edgeR (version 3.32.1) 
 
 
The code used to produce TCRA T cell fraction scores is available for academic non-commercial research purposes upon reasonable request. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

TRACERx sequencing datasets used in this paper are described in previous studies (see PMID:28445112 and PMID:30894752). Details of all datasets obtained from 
third parties used in this study (see Extended Table 1) are as follows: 
 
- Yokoyama et al. 2020  (PMID:30602793) 
- Harbst et al. 2016 (PMID:27216186) 
- Lamy et al. 2016 (PMID:27488526) 
- Brastianos et al. 2015 (PMID:26410082) 
- Gerlinger et al. 2012 (PMID:22397650) 
- Gerlinger et al. 2014 (PMID:24487277) 
- Savas et al. 2016 (PMID:28027312) 
- Suzuki et al. 2015 (PMID:25848751) 
- Turajlic et al. 2018 (PMID:29656894) 
- Messaoudene et al. 2019 (PMID:30924846) 
- Snyder et al. 2014 (PMID:25409260) 
- Van Allen et al. 2015 (PMID:26359337) 
- Hugo et al. 2016 (PMID:26997480) 
- Riaz et al. 2017 (PMID:29033130) 
- Cristescu et al. 2018 (PMID:30309915) 
- Snyder et al. 2017 (PMID:28552987) 
- Mariathasan et al. 2018 (PMID:29443960) 
- McDermott et al. 2018 (PMID:29867230) 
- Rizvi et al. 2015 (PMID:25765070) 
- Le et al.  2015 (PMID:26028255) 
- Litchfield et al. 2021 (PMID:33508232) 
- Shim et al. 2020 (PMID:32320754) 
 
The RNA-seq data and Whole exome sequencing (WES) data (in each case from the TRACERx study) generated, used or analysed during this study are not publicly 
available and restrictions apply to the availability of these data. Such RNAseq and WES data are available through the Cancer Research UK & University College 
London Cancer Trials Centre (ctc.tracerx@ucl.ac.uk) for academic non-commercial research purposes upon reasonable request, and subject to review of a project 
proposal that will be evaluated by a TRACERx data access committee, entering into an appropriate data access agreement and subject to any applicable ethical 
approvals. 
 
Clinical trial information (if applicable) is also available within the associated publications described both above and in Extended data table 1.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size All analysis was done on pre-existing data sets and as such no statistical methods were used to predetermine sample size. 

Data exclusions Samples with insufficient purity or unreliable copy number profiles were excluded from the analysis. The multi-sample pan cancer cohort was 
designed to focus on multi-sample primary and not metastatic tumours and  thus was restricted to tumours with multiple regions sampled 
from the primary tumour. Patients that had already received CPIs or were on treatment at the time of the tumour sampling were excluded 
from the CPI1000+ cohort due to any possible confounding effects this would have on our analysis.
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Replication This study was on pre-existing data sets and hence findings were not replicated

Randomization No randomization or permutation analysis was performed in this study, samples were split based on either categorical data or threshold 
values e.g. for the TCRA T cell fraction.

Blinding Blinding was not applicable in this study, all data was from pre-existing data and there was no control and treatment arms involved

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics There were 68 male and 32 female non-small cell lung cancer patients in the TRACERx study, with a median age of 68. The 
cohort is predominantly early-stage: Ia(26), Ib(36), IIa(13), IIb(11), IIIa(13), IIIb(1). Seventy-two had no adjuvant treatment and 
28 had adjuvant therapy. 
Patients were recruited into TRACERx according to the following eligibility criteria (taken from the study protocol). 
Inclusion criteria: 
-Written Informed consent 
-Patients ≥18 years of age, with early stage I-IIIA disease who are eligible for primary surgery 
-Histopathologically confirmed NSCLC, or a strong suspicion of cancer on lung imaging necessitating surgery (e.g. diagnosis 
determined from frozen section in theatre) 
-Primary surgery in keeping with NICE guidelines planned (see section 9.3) 
 -Agreement to be followed up in a specialist centre 
 -Performance status 0 or 1 
-Suspected tumour at least 15mm in diameter on pre-operative imaging 
Exclusion criteria: 
-Any other current malignancy or malignancy diagnosed or relapsed within the past 5 years (other than non-melanomatous 
skin 
cancer, stage 0 melanoma in situ, and in situ cervical cancer) 
-Psychological condition that would preclude informed consent 
-Treatment with neo-adjuvant therapy for current lung malignancy deemed necessary 
-Adjuvant therapy other than platinum-based chemotherapy and/or radiotherapy 
-Known Human Immunodeficiency Virus (HIV), Hepatitis B Virus (HBV), Hepatitis C Virus (HCV) or syphilis infection. 
-Sufficient tissue, i.e. a minimum of two tumour regions, is unlikely to be obtained for the study based on pre-operative 
imaging 
Patient ineligibility following registration: 
-There is insufficient tissue 
-The patient is unable to comply with protocol requirements 
-There is a change in histology from NSCLC following surgery, or NSCLC is not confirmed during or after surgery. 
-Change in staging to IIIB/IV following surgery 
-The operative criteria are not met (e.g. incomplete resection with macroscopic residual tumours (R2)); see section 9.3 for a 
list 
of accepted surgical procedures. Patients with microscopic residual tumours (R1) are eligible and should remain in the study 
-Adjuvant therapy other than platinum-based chemotherapy and/or radiotherapy is administered.

Recruitment Patients seen with a new diagnosis of lung cancer in lung cancer units across the United Kingdom, according to the eligibility 
criteria above, were recruited. No selection bias has been identified to date. 
All patient tumor regions with RIN scores > 5 were used for RNA-sequencing and analyzed in this study. 
All patients were assigned a study ID that was known to the patient. These were subsequently converted to linked study Ids 
such 
that the patients could not identify themselves in study publications. All human samples, tissue and blood, were linked to the 
study ID and barcoded such that they were anonymised and tracked on a centralised database overseen by the study sponsor 
only. 
Informed consent for entry into the TRACERx study was mandatory and obtained from every patient. 
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Ethics oversight The TRACERx study (Clinicaltrials.gov no: NCT01888601) is sponsored by University College London (UCL/12/0279) and has 
been approved by an independent Research Ethics Committee (13/LO/1546)

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration NCT01888601

Study protocol The study protocol is available at NEJM.org linked to Jamal-Hanjani et al NEJM 2017 (PMID: 28445112)

Data collection Patients seen with a new diagnosis of lung cancer in lung cancer units across the United Kingdom, according to the eligibility 
criteria outlined in the study protocol, were recruited. No selection bias has been identified to date. 
All patient tumor regions with RIN scores > 5 were used for RNA-sequencing and analyzed in this study. 
All patients were assigned a study ID that was known to the patient. These were subsequently converted to linked study Ids such 
that the patients could not identify themselves in study publications. All human samples, tissue and blood, were linked to the 
study ID and barcoded such that they were anonymised and tracked on a centralised database overseen by the study sponsor 
only. 
Informed consent for entry into the TRACERx study was mandatory and obtained from every patient

Outcomes The outcome measures of the TRACERx trial are intratumour heterogeneity, disease-free survival, and overall survival.
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