

COMPLIANCY AND RECYCLING: A WAY TO SORT IT ALL OUT

Plastics Circularity Multiplier Mathilde Taveau [Coolrec] on behalf of the CREATOR project

mathilde.taveau@coolrec.com More information on CREAToR: www.creatorproject.eu

Why is it challenging to recycle?

separation of polymer parts

H

continuous extraction for removal of Br flame retardant

> labelling of **Br free material**

modification for reuse

LIBS technology (Laser-Induced Breakdown Spectroscopy) for characterisation

•

Extractive extrusion for the purification

Re-additivation for the re-use (new flame retardants, processing additives)

to ensure hazardous flame retardant content **TECHNOLOGIES**

Is there a match between the complexity of the streams and the compliancy to the European legislation?

SORTING

EXTRA SORTING STEPS Electrostatic • WASTE PLASTICS separator DENSITY METAL Color • BATH GRANU SEPARA separator LATOR TION **Rubber** • SUCTION separator **HEAVY PLASTICS METALS** DENSITY BATH **LIGHT FRACTION** POLYOLEFINS DENSITY **ABS BFR** BATH **PS BFR** ABS/PC **STYRENICS** COMPO UNDING Annually, Coolrec processes 31 000 tons CREA **BACK TO NEW PRODUCTS** of plastics from WEEE.

The Coolrec case · WEEE recycling

Material

Target polymers: ABS, HIPS, ABS/PC

> Particle size: 40-60mm

Wet material

SoC

Target elements:

Heavy metals: Cadmium, Lead, Chrome

Bromine based flame retardant

Chlorine based flame retardant

Process

Need to see black plastics (low reflectance in the NIR region)

Automated sorting process

Good ratio purity / efficiency

A solution to many challenges

Option 2: LIBS system in input combined with traditional sorting processes on the free of SoC fraction

WHAT'S NEXT?

CONTINUOUS PURIFICATION OF THE TWO SORTED WASTE FRACTIONS USING MECHANICAL AND PHYSICAL PROCESSES

Impacts

TECHNICAL

Accurate system leading to a precise separation of the plastics

Increasing the recycling rate by recovering plastics fractions that are today send to incineration (reduction of more than 45% of the waste plastic fraction)

Overcoming the challenge of the **black plastics** by using another detection technic than the NIR

Compliancy to **REACH**, **POP** and **ROHS**

SOCIAL & ECONOMIC

Ensuring new material sources lowers the dependencies from **petroleum sources** within Europe and lead to more **circular models**

Keeping recycling technology at outmost technical level and therefore **protecting jobs** in the sector in Europe

Ensuring controlled disposal of legacy additives

Offering treatment solutions for a **wider range of waste** within Europe

Shifting the vision of recycled plastics towards a safe secondary raw material

RESEARCH & INNOVATION TO DRIVE THE **GREEN DEAL** EUROPEAN PLASTICS STRATEGY

Is there a match between the complexity of the streams and the compliancy to the European legislation?

European Commission

Yes but...this is only a tiny part of the loop

Trying to be circular

COLLABORATION

Thank you!

CREATOR has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement no. 820477