Accelerated Article Preview

Parity and lactation induce T cell mediated breast cancer protection

Received: 2 August 2024

Accepted: 6 October 2025

Accelerated Article Preview

Cite this article as: Virassamy, B. et al. Parity and lactation induce T cell mediated breast cancer protection. *Nature* https://doi.org/10.1038/s41586-025-09713-5 (2025) Balaji Virassamy, Franco Caramia, Peter Savas, Michael A. Harris, Jia-Wern Pan, Jianan Wang, Emmaline Brown, Megan M. R. O'Malley, Courtney T. van Geelen, Michael Hun, Thomas N. Burn, Sneha Sant, Jamieson D. Ballan, Jasmine Kay, Luis E. Lara Gonzalez, Kylie Clarke, Han Xian Aw Yeang, Rejhan Idrizi, Metta Jana, Damon J. Challice, Roberto Salgado, Heather Thorne, kConFab consortium, Cathie Poliness, Sophie Nightingale, Soo-Hwang Teo, Terence P. Speed, Jane Visvader, Paul J. Neeson, Phillip K. Darcy, Laura K. Mackay & Sherene Loi

This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.

Parity and lactation induce T cell mediated breast cancer protection

- 3 Balaji Virassamy*1,2, Franco Caramia*1,2, Peter Savas*1,2, Michael A Harris*1,2, Jia-Wern Pan³,
- 4 Jianan Wang^{1,2}, Emmaline Brown¹, Megan M. R. O'Malley^{1,2}, Courtney T van Geelen^{1,2},
- 5 Michael Hun^{1,2}, Thomas N Burn⁴, Sneha Sant¹, Jamieson D Ballan^{1,2}, Jasmine Kay^{1,2}, Luis E
- 6 Lara Gonzalez^{1,2}, Kylie Clarke¹, Han Xian Aw Yeang^{1,2}, Rejhan Idrizi^{1,2}, Metta Jana^{1,2}, Damon
- J Challice¹, Roberto Salgado^{1,5}, Heather Thorne^{1,2}, kConFab consortium^{1*}, Cathie Poliness⁶,
- 8 Sophie Nightingale⁶, Soo-Hwang Teo³, Terence P Speed⁷, Jane Visvader^{8,9}, Paul J Neeson^{1,2},
- 9 Phillip K. Darcy^{1,2}, Laura K Mackay^{#4} and Sherene Loi^{#1,2}

11 Affiliations:

1

2

10

- 12 ¹ Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria,
- 13 Australia.
- ² The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne,
- 15 Melbourne, Australia.
- ³ Cancer Research Malaysia, Subang Jaya, Malaysia.
- ⁴ Department of Microbiology and Immunology, The University of Melbourne at the Peter
- 18 Doherty Institute for Infection and Immunity, Melbourne, Australia.
- 19 ⁵ GZA-ZNA Hospitals, Antwerp, Belgium.
- ⁶ Department of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia.
- ⁷ Department of Bioinformatics, the Walter and Eliza Hall Institute of Medical Research,
- 22 Parkville, VIC 3052, Australia.
- 23 ⁸ Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical
- 24 Research, Parkville, VIC 3052, Australia.
- ⁹ Department of Medical Biology, The University of Melbourne, VIC 3010, Australia.
- ^{*} A list of the kConFab Investigators and their affiliations appears at the end of the paper.

29 * These authors contributed equally. 30 31 **#Corresponding authors** 32 33 Professor Sherene Loi, MD, PhD. Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, AUSTRALIA 3000 34 35 Email: sherene.loi@petermac.org 36 37 Professor Laura K Mackay, PhD Peter Doherty Institute for Infection and Immunity, Melbourne, AUSTRALIA 3000 38 Email: lkmackay@unimelb.edu.au 39

Abstract

Parity and breastfeeding reduce the risk of breast cancer, particularly triple-negative breast cancer (TNBC)^{1,2}, yet the immunological mechanisms underlying this protection remain unclear. Here, we show that parity induces an accumulation of CD8⁺ T cells, including cells with a tissue-resident memory (T_{RM})-like phenotype within human normal breast tissue. In murine models, pregnancy followed by lactation and involution drove the accumulation of CD8⁺ T cells in the mammary gland, coinciding with reduced tumour growth and increased intratumoural immune cell infiltration, effects that were abrogated by CD8⁺ T cell depletion. Importantly, this CD8⁺ T cell dependent tumour control was only observed following a complete cycle of lactation and involution. Consistent with this, primary TNBCs from parous women exhibited greater T cell infiltration and improved clinical outcomes. Together these findings, spanning preclinical models and over 1000 patient samples, provide new insight into how reproductive history shapes breast immunity, positioning CD8⁺ T cells as key mediators of parity-associated protection and informing novel strategies for both prevention and treatment of breast cancer.

- 63 **Key words**:
- Breast cancer prevention, Triple negative breast cancer, Pregnancy-associated breast cancer,
- Parity, Lactation and breastfeeding, CD8⁺ Tissue-resident memory cells, Intratumoural CD8⁺
- T cells, Tumour infiltrating lymphocytes, Cancer immune surveillance.

Main

It is widely recognised that parity and lactation are associated with a reduced long-term risk of breast cancer^{1,2}. Parity is thought to protect by reshaping mammary epithelial cell differentiation and growth pathways that occur during pregnancy, lactation, and involution, thereby reducing susceptibility to malignant transformation over time^{3,4,5}. While parity has been associated with a decreased risk of hormone receptor-positive breast cancer, breastfeeding appears to confer a more specific reduction in the risk of triple-negative breast cancer (TNBC)^{1,6}. The cellular and molecular mechanisms underlying this association are unclear. Deeper understanding could enable novel breast cancer subtype-specific prevention and treatment strategies. This could be particularly relevant for women at higher risk of TNBC, such as those who carry germline pathogenic variants, or for groups with poorer outcomes even after adjusting for key prognostic factors, such as certain ethnic groups⁷.

The prognostic role of CD8⁺ tumour infiltrating lymphocytes (TIL) is well established in both early and advanced stage TNBC^{8,9} and T cell checkpoint inhibitors are now part of standard-of-care therapy, underscoring the critical role of host immunity. Our prior work demonstrated that a subset of CD8⁺ T cells with a tissue-resident memory (T_{RM})-like phenotype mediates robust anti-tumour responses and is associated with reduced breast cancer recurrence^{8,10}. We also showed that T_{RM}-like cells are present in both breast tumours and cancer-unaffected normal breast tissue, implicating them in treatment response and long-term immune surveillance of the breast.

Post-partum, immune cell populations in mammary tissue undergo considerable modulation: pregnancy and lactation are followed by widespread apoptosis and tissue remodelling in the process known as involution^{11,12}. Changes in immune subsets, such as increased NKT T cells in the post-involution mammary gland, suggest a parity-induced immune surveillance mechanism¹³. Furthermore, circulating T cells increases in parous women have been observed to persist for months post-partum and are thought to contribute to autoimmunity¹³-

¹⁷. Collectively, these observations suggest long-lasting immunologic breast remodelling after pregnancy, although the functional significance of these populations on tumour surveillance remains unclear. In this study, we tested the hypothesis that parity and post-lactational involution favourably reshape the mammary microenvironment by recruiting and retaining CD8⁺ T cells that persist long term in the breast to enhance immune surveillance and protect against tumorigenesis.

Results

Parity associations with T cell quantity in human normal breast

To assess how reproductive history influences the immune landscape of normal breast tissue, we first compared the quantity and phenotype of CD8⁺ T cells in cancer unaffected breast tissue from parous and nulliparous women¹⁸. We analysed single-cell (sc) transcriptomic data from four datasets comprising 985,662 single cells (including >35,000 CD8⁺ T cells) from normal breast tissue of 170 adult women at average breast cancer risk, collated from Reed *et al*¹⁵. We observed that parous women (≥1 full-term pregnancy) had significantly higher proportions of CD3⁺, CD8⁺ and CD8⁺ T_{RM}-like cells than nulliparous women (**Fig 1a**). Other immune subsets analysed did not differ significantly. (**Extended Data Fig 1a-e**).

We next evaluated immune infiltration by flow cytometry in cancer-unaffected healthy breast tissue from women undergoing prophylactic mastectomy including parous (n=65; >1 child) and nulliparous (n=25) individuals at high risk of breast cancer (SI. Table 1). Compared to nulliparous women, breast tissue of parous women showed increased proportions of CD45⁺, CD3⁺ and CD8⁺ lymphocytes and notably, significantly increased proportions of CD8⁺ T cells expressing CD69 and CD103 canonical markers of tissue residency (T_{RM}-like cells, Fig. 1b). Multiplex OPAL staining further confirmed increased numbers of CD3⁺, CD8⁺, including a CD69⁺CD103⁺CD8⁺ T_{RM}-like cell population in breast tissue from parous compared with

nulliparous women, with localisation predominantly in intraepithelial or periductal pancytokeratin positive regions (**Fig. 1c; Extended Data Fig. 2a,b**). This dataset also allowed us to examine the long-term persistence of CD8⁺ T_{RM}-like cells over a wide range of intervals between last live birth and tissue donation, in both pre- and post-menopausal women. CD69⁺CD103⁺ CD8⁺ T cells were stably maintained for over 30 years after pregnancy and showed superior long-term retention compared with their CD69⁺CD103⁻ CD8⁺ T cell counterparts, consistent with prior observations that CD103⁺ T_{RM}-like cells predominate over time (**Fig. 1d**)^{19,20}.

To investigate the qualitative differences in breast-associated CD8⁺ T cells related to parity and lactation, we performed bulk RNA-sequencing (RNA-seq) on T_{RM}-like cells isolated from breast tissue from parous cancer-unaffected women who had breast fed for ≥6 months, comparing gene expression profiles to autologous circulating CD8⁺ T cells. We identified 347 differentially expressed genes in the parous breast T_{RM}-like cells (SI. Table 2), including upregulation of *ITGAE*, *ITGA1* and *CXCR6*, hereafter called the "Parous breast-associated (PB)-T_{RM} signature" (Fig 1e). Analysis of an independent dataset comprising 109 normal breast tissue samples from cancer-unaffected women²¹, revealed significant positive enrichment of the signature in parous compared to nulliparous women confirming parity-associated transcriptional differences (Fig 1f). We additionally confirmed that the PB-T_{RM} signature was significantly enriched in the CD8⁺T_{RM} compared with CD8⁺T_{EM} annotated single cells in the collated transcriptomic datasets¹⁵ (Extended Data Fig 2c).

Lactation and involution enhance CD8⁺ T cells in healthy murine MFP

We next investigated immune cell populations in the murine mammary fat pad (MFP) following pregnancy, lactation and involution in C57BL/6 mice under three conditions: (i) a complete cycle of natural lactation (21 days) followed by pup weaning, with tissue analysed at 28 days post-involution when the mammary gland had returned to a pre-pregnancy state (d28-inv) (ii) early force-weaned (FW) involution, where pups were removed within 12-24h of birth with

minimal lactation, with tissue analysed 10 days post-involution: d10-FW and (iii) age-matched controls to parous mice: virgin (**Fig. 2a**).

Immune profiling of the MFP at these timepoints revealed a selective increase in the frequency of CD44^{hi}CD8⁺ T cells among CD45⁺ populations in d28-inv mice (**Fig 2b, Extended Data Fig. 3a**). Total CD45⁺ and CD8⁺ T cell numbers were also significantly elevated compared to virgin mice, including CD8⁺ T cell sub-populations expressing CD69⁺CD103⁻ and CD69⁺CD103⁺ (**Fig 2c, Extended Data Fig. 3b**). A similar enrichment of CD8⁺ T cell subsets was observed in parous BALB/c mice at d28-inv, reinforcing this CD8⁺ T cell response is a strain independent feature of the post-involution mammary gland (**Fig. 2d**). In contrast, CD8⁺ T cells and T_{RM}-like cell populations were not significantly increased at d10-FW in C57BL/6 mice compared to virgin controls, and only modestly in BALB/c mice (**Fig. 2e, Extended Data Fig. 3c**). However, d10-FW mice did show a marked rise in ductal macrophages, consistent with previous reports^{12,22} (**Fig. 2e**).

To further characterise parity-associated CD8+ T cells, we next performed high-dimensional proteomic analyses. This revealed three clusters significantly enriched in d28-inv mice compared with virgin controls (**Fig. 2f**). All three clusters expressed canonical residency markers such as CD69, CD103 and CD49a along with differential expression of granzyme A, NK1.1 and CXCR3 (**Fig. 2g, Extended Data Fig. 4a**). Supporting the presence of T_{RM}-like cells, the d28-inv MFP also showed increased expression of *Tgfβ*2, *Tnf* and *Cxcl16* (**Extended Data Fig. 5a**), factors associated with CD8+ T_{RM} development²³⁻²⁵. Consistent with our human breast tissue findings, OPAL fluorescence microscopy revealed a significant increase in CD8+ T_{RM}-like cells in the MFP of d28-inv mice compared to virgin controls (**Extended Data Fig. 5b-d**), with these cells located closer to E-cadherin+ epithelial cells (**Extended data Fig. 5e**). Together, these data show that a complete cycle of lactation and involution promotes the accumulation and epithelial association of CD8+ T cells in murine mammary tissue, paralleling observations in the human normal breast.

Lactation and involution restrain murine mammary tumour growth

Accelerated tumour growth during early involution has been reported in preclinical models and associated with increased myeloid cell infiltration^{11,26}. To further explore how different stages of involution affect tumour progression, we examined tumour growth in the MFP of d28-inv and d10-FW mice, compared to age-matched virgin controls using syngeneic orthotopic murine models of TNBC. To this end, AT3-OVA TNBC cells were injected into the MFP of C57BL/6 mice at the timepoints described above (**Fig. 2a**). Tumour growth in d10-FW mice was comparable to virgin controls (**Fig. 3a**), consistent with previous reports¹¹. In contrast, tumour growth was significantly reduced in d28-inv mice (**Fig. 3b**). This protective effect was also observed in BALB/c mice using the D2A1 BC cells, which lacks engineered antigens, such as ovalbumin (OVA), providing an additional model of parity-induced tumour suppression (**Fig 3c,d**).

Concomitant with reduced tumour outgrowth, we observed a significant increase in CD8⁺ T cells in d28-inv AT3-OVA tumours compared to virgins (**Fig. 3e,f**) including OVA-specific tetramer⁺ CD8⁺ T cells and CD69⁺CD103⁺ T_{RM}-like subsets (**Fig. 3g**). Monocytes, CD4⁺ Th1 cells, dendritic cells and XCR1⁺ type I dendritic cells were also elevated in d28-inv tumours, while B cells, NK cells and T cell receptor (TCR)γδ⁺ cells were not significantly changed (**Fig. 3g**, **Extended Data Fig. 6a**). In contrast, CD8⁺ T cells were not increased in d10-FW AT3-OVA tumours compared to virgin controls (**Extended Data Fig. 6b**). Similarly, in D2A1 tumours, CD45⁺ and CD8⁺ T cell numbers were higher in d28-inv mice, but not in d10-FW mice, relative to virgin controls (**Extended Data Fig. 6c,d**).

CD8⁺ T cells mediate parity-induced tumour protection

To investigate whether reduced tumour growth in parous mice was T cell-mediated, we inoculated virgin and d28-inv RAG2^{-/-}γc^{-/-} mice (lacking NK, T and B cells) with AT3-OVA cells and observed no difference in tumour growth (**Fig. 4a**). To assess whether CD8⁺ T cells could

restore protection, we transferred naive CD8⁺ TCR transgenic OT-I cells (specific for OVA) into RAG2^{-/-}γc^{-/-} mice prior to mating or into virgin controls. Tumour growth was significantly reduced in d28-inv compared with virgin mice (**Fig. 4b**), but not when tumour cells were inoculated at d10-FW (**Extended Data Fig. 7a**). Activated OT-I cells transferred prior to mating accumulated in greater numbers in the MFP at d28-inv compared to virgin mice (**Extended Data Fig. 7b**), indicating that the post-lactation mammary microenvironment promotes the differentiation of CD8⁺ T_{RM}-like cells. In established tumours, CD45⁺ and TCR-vα2⁺ CD8⁺ T cells were elevated in d28-inv mice compared with virgins, but not in d10-FW (**Fig. 4c**, **Extended Data Fig. 7c**). Adoptive transfer of activated gBT-I cells (irrelevant specificity) into RAG^{-/-} mice bearing AT3-OVA tumours had no effect on tumour growth (**Extended Data Fig. 7d**).

We next tested the requirement for CD8⁺ T cells in parity-induced protection. For this, virgin and d28-inv mice were depleted of CD8α⁺, CD8β⁺ or CD4⁺ T cells before tumour inoculation and throughout the experiment (Extended Data Fig. 8a-b). As expected, isotype-treated d28inv mice had lower tumour burdens than virgins, accompanied by increased CD8α+CD44hi T cell numbers in tumours (Extended Data Fig. 8c,d). Critically, we found that tumour protection in d28-inv mice was significantly reduced by either CD8α or CD8β depletion alone, identifying CD8 $\alpha\beta^+$ as the key mediators and excluding a dominant role for CD8 $\alpha\alpha^+$ T cells (**Fig. 4d,e**). In virgins, only combined CD8α⁺ and CD4⁺ T cell depletion increased tumour growth. Notably, CD4⁺ T cell depletion alone enhanced tumour control in d28-inv mice. High dimensional proteomic analysis of CD45⁺ cells from tumours revealed increased abundance of two clusters (C1 and C2) enriched for CD8+ T cell and cDC1 markers in CD4+ depleted d28-inv mice (Extended Data Fig. 8e-k). To assess whether local CD8⁺ T cells were sufficient for tumour control or whether circulating T cell recruitment was required, we treated virgin and d28-inv mice with the S1PR1 agonist FTY720 to block T cell egress before tumour inoculation (Fig. 4f). Tumour protection was lost in FTY720-treated d28-inv mice, accompanied by reduced tumour-specific CD8+ T cells (Fig. **4g-i**). Collagen abundance did not differ in between virgin and d28-inv tumours (**Extended Data Fig. 8I,m**) suggesting that stromal differences are unlikely to explain T cell recruitment patterns. Together, these findings demonstrate that parity-induced tumour protection is mediated by conventional CD8 $\alpha\beta^+$ T cells. Following lactation and involution, tumour challenge drives both expansion of the mammary-resident T cells and recruitment of circulating tumour-specific effectors, enhancing immune surveillance and tumour clearance.

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

235

236

237

238

239

240

Breastfeeding associated with immune infiltration in human TNBC

Having established that reduced tumour growth following lactation and involution in mice is dependent on CD8+ T cells, we next asked whether a similar association exists in human TNBCs, where high T cell infiltrate is well known to correlate with improved prognoses8. Epidemiological studies also suggest that while parity may transiently increase breast cancer risk, breastfeeding attenuates the risk of developing TNBC1. To explore this, we examined the Malaysian MyBrCa cohort, which includes 934 women with early-stage breast cancer and detailed clinicopathologic and genomic information. We focused on the subset of 734 patients with recorded parity status and 656 with breastfeeding history^{27,28}. In this cohort, the median maternal age at birth of first child was 27 years (range 14 – 43), the median number of children per woman was 3 (range 1-11) and the median lifetime breastfeeding duration in women who breastfed at all was 4 months (range 0.5 – 156, SI. Table 3). Using the gene expression derived ESTIMATE immune infiltrate score²⁹, our analysis revealed significantly higher tumoural immune content in basal-like (TNBC) in parous women overall, compared with the nulliparous women who subsequently developed breast cancer post-partum (Fig. 5a). A similar increase in the ESTIMATE score was seen in parous women who breastfed compared to nulliparous women (Fig 5b). Additionally, we performed differential expression analysis between these "basal-like" tumours in parous versus nulliparous patients and parousbreastfeeding versus parous-non-breastfeeding patients. Moreover, the PB-T_{RM} signature generated in Fig. 1f was highly enriched with both parity and breastfeeding status (Fig 5c,d), highlighting the specificity of the PB-T_{RM} signature to breast involution by parity and lactation.

Furthermore, parous women who had breastfed had significantly greater intratumoural CD8⁺ T cell density in basal-like tumours and when compared to other BC subtypes (**Fig 5e**; **Extended Data Fig. 9f**).

We further examined an independent of cohort of 270 Australian women who carry a germline pathogenic variant, who had been diagnosed with hormone receptor-negative early breast cancer after at least one full term pregnancy, with available breastfeeding history and survival outcomes (**Fig. 5f, SI. Table 4**). After adjustment for known prognostic factors, we found that patients who breastfed exhibited significantly longer overall survival (OS) after breast cancer diagnosis than patients who did not breastfeed (HR 0.39; 95%CI: 0.19, 0.79, p= 0.009; **Extended Data Fig 9a**). Using an established method to assess immune infiltration on haematoxylin and eosin-stained (H&E) digital slides³⁰, we found increased lymphocytic quantity in individuals with the longest breastfeeding duration (**Fig 5g**). Although precise separation of parity and breastfeeding effects in human datasets is challenging, our analyses of two independent cohorts suggest that breastfeeding may contribute additional immune-mediated protection beyond parity alone.

To further support the general clinical relevance of the PB-T_{RM} signature, we examined associations with TILs and survival outcomes in the available early-stage breast cancer cohort^{31,32}. We observed strong correlation of increased TIL quantities³⁰ with higher levels of the PB-T_{RM} signature in TNBC patients in the TCGA Breast Cancer dataset³² (**Extended Data Fig 9b,c**). The PB-T_{RM} signature was also enriched in "basal-like" tumours and associated with improved disease specific and OS in the METABRIC dataset (**Extended Data Fig 9d,e**).

Discussion

The mammary gland undergoes profound structural and immunological changes across reproductive stages. While ductal macrophages in mammary gland biology are well studied, evidence increasingly supports a critical role for adaptive immunity, particularly during puberty and pregnancy^{12,33}. Various immune cell subsets populate the ductal epithelium, and progesterone has been shown to influence T cell polarisation during pregnancy^{11,33}. Additionally, breast cancers that develop in the immediate post-partum period have a poorer prognosis^{34,35}. however, the mechanisms by which parity and breastfeeding confer long-term protection from TNBC have remained unclear.

We show that normal breast tissue from parous women harbours significantly more CD8⁺ T cells, particularly those with a T_{RM}-like phenotype, compared to nulliparous women across diverse backgrounds¹⁵. Given CD8⁺ T cell quantity is associated with improved TNBC outcomes, we hypothesised that parity-driven CD8⁺ T cell responses could enhance long-term cancer immunosurveillance. Supporting this, CD8⁺ T_{RM}-like cells in normal breast tissue from parous women were observed to persist for decades post-partum.

In murine models, completion of a full reproductive cycle was associated with reduced tumour growth and a sustained increase of T cells in the MFP, including those with a T_{RM}-like phenotype. These cells localised to the mammary epithelium under homeostatic conditions and were more frequently found within tumours following lactation, supporting their role in tumour immune surveillance. Depletion of conventional CD8αβ+ T cells abrogated parity induced protection, confirming their essential functional role. Similarly, FTY720-mediated blockade of lymphocyte egress impaired tumour protection, suggesting that the parous mammary gland not only maintains resident CD8+ T cells, but facilitates the recruitment of circulating tumour-reactive T cells from the periphery. This was accompanied by increased numbers of conventional type 1 dendritic cells the tumours of parous mice, consistent with enhanced CD8+ T cell priming and maintenance³⁶. Prior studies reporting expansion of

mammary intraepithelial lymphocytes and NKT cells via epithelial CD1d expression support the concept of immune remodelling after lactation, but our results indicate that these populations are not the primary mediators of tumour protection in our murine models^{13,16,37}. Instead, our data complement these studies by demonstrating a durable, CD8⁺ T cell-mediated layer of tumour protection in the mammary tissue post-lactation. These findings were paralleled in human TNBC, where tumours from parous women exhibited greater T cell infiltration, which also correlated with longer breastfeeding duration. Such associations may reflect cumulative antigen exposure, cytokine signalling or involution-associated tissue changes that promote long-term T cell retention.

Given known population-level variation in immune infiltration and breast cancer risk, it is important to consider how these findings may generalise across populations. For instance, higher TIL content in primary TNBCs from Asian compared to European populations has been previously reported, with exploratory sub-studies from phase III trials suggesting a numerically greater magnitude of benefit from checkpoint inhibition, though these comparisons remain hypothesis generating³⁸. Although our findings focus on the potential preventive role of parity-induced CD8+ T cells that are resident in the breast, they suggest that the immune contexture of the parous breast could influence TNBC therapeutic responsiveness. This is particularly relevant given the increasing use of immune checkpoint blockade in early-stage disease. However, we acknowledge that this remains the subject of future investigation.

Tumour-extrinsic factors, such as the mammary microbiome and dietary influences, may further modulate immune infiltration and tumour development³⁹. Additionally post-partum tissue remodelling, including clearance of mutant clones and epigenetic changes^{3,40} might act synergistically with CD8⁺T cell-mediated surveillance to eliminate premalignant cells. Similar immune-mediated protective mechanisms have been observed in other tissues, such as commensal skin human papilloma viruses promoting local CD8⁺T cell populations; immune mediated regression of early lung neoplastic conditions, HER2-specific T cells linked to parity-

associated protection of ductal carcinoma in situ (DCIS)⁴¹⁻⁴³. These examples underscore the importance of physiological immune health in normal tissue as a mechanism for cancer prevention-- a concept we demonstrate here specifically for TNBC.

Our study has limitations. While we focused on TNBC, reproductive history might also influence immune mediated protection in other BC subtypes though this remains to be determined. We recognise that we did not assess hormone receptor-positive models due to limitations in preclinical systems, even though parity and breastfeeding is associated with reduced risk of all breast cancer subtypes. Oestrogen signalling has been shown to have diverse effects on immune cell function, with context and receptor-specific outcomes. While oestrogen can suppress certain immune responses via ER α signalling, ER β activation in immune cells has been associated with enhanced anti-tumour activity⁴⁴. Additionally, our human cohorts varied in reproductive histories, population backgrounds, time from tissue donation and last child, potentially introducing heterogeneity. Lastly, antigen specificity of the CD8+ T cells identified remains undefined, warranting future research.

In conclusion, our findings reveal that lactation-associated remodelling of the mammary gland confers durable CD8⁺ T cell-mediated protection against TNBC. By integrating data from murine models and diverse human populations, this work provides a new framework for understanding how reproductive history shapes long-term immune surveillance and influences breast cancer risk. These insights highlight the need for tailored prevention and treatment strategies that consider parity status and highlight the importance of systematically capturing reproductive history in future immunotherapy clinical trials- particularly critical given the rising global burden of breast cancer⁴⁵.

References

369

- Jung, A.Y., et al. Distinct Reproductive Risk Profiles for Intrinsic-Like Breast Cancer
 Subtypes: Pooled Analysis of Population-Based Studies. J Natl Cancer Inst 114, 1706 1719 (2022).
- Collaborative Group on Hormonal Factors in Breast, C. Breast cancer and breastfeeding: collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50302 women with breast cancer and 96973 women without the disease. *Lancet* **360**, 187-195 (2002).
- 377 3. Feigman, M.J., *et al.* Pregnancy reprograms the epigenome of mammary epithelial cells and blocks the development of premalignant lesions. *Nat Commun* **11**, 2649 (2020).
- 380 4. D'Cruz, C.M., et al. Persistent parity-induced changes in growth factors, TGF-beta3, and differentiation in the rodent mammary gland. *Mol Endocrinol* **16**, 2034-2051 (2002).
- Russo, J., Moral, R., Balogh, G.A., Mailo, D. & Russo, I.H. The protective role of pregnancy in breast cancer. *Breast Cancer Res* **7**, 131-142 (2005).
- 385 6. Islami, F., *et al.* Breastfeeding and breast cancer risk by receptor status--a systematic review and meta-analysis. *Ann Oncol* **26**, 2398-2407 (2015).
- 7. Palmer, J.R., *et al.* Parity, lactation, and breast cancer subtypes in African American women: results from the AMBER Consortium. *J Natl Cancer Inst* **106**(2014).
- 389 8. Harris, M.A., *et al.* Towards targeting the breast cancer immune microenvironment. 390 *Nat Rev Cancer* (2024).
- 391 9. Savas, P., *et al.* Clinical relevance of host immunity in breast cancer: from TILs to the clinic. *Nat Rev Clin Oncol* **13**, 228-241 (2016).
- 393 10. Virassamy, B., et al. Intratumoral CD8(+) T cells with a tissue-resident memory phenotype mediate local immunity and immune checkpoint responses in breast cancer. *Cancer Cell* **41**, 585-601.e588 (2023).
- 396 11. Hitchcock, J., Hughes, K., Pensa, S., Lloyd-Lewis, B. & Watson, C.J. The immune environment of the mammary gland fluctuates during post-lactational regression and correlates with tumour growth rate. *Development* **149**(2022).
- Dawson, C.A., et al. Tissue-resident ductal macrophages survey the mammary epithelium and facilitate tissue remodelling. *Nat Cell Biol* **22**, 546-558 (2020).
- 401 13. Hanasoge Somasundara, A.V., et al. Parity-induced changes to mammary epithelial cells control NKT cell expansion and mammary oncogenesis. *Cell Rep* **37**, 110099 403 (2021).
- 404 14. Kumar, T., et al. A spatially resolved single-cell genomic atlas of the adult human breast. *Nature* (2023).
- 406 15. Reed, A.D., et al. A single-cell atlas enables mapping of homeostatic cellular shifts in the adult human breast. *Nat Genet* **56**, 652-662 (2024).
- 408 16. Corral, D., et al. Mammary intraepithelial lymphocytes promote lactogenesis and offspring fitness. *Cell* **188**, 1662-1680.e1624 (2025).
- 410 17. Watanabe, M., et al. Changes in T, B, and NK lymphocyte subsets during and after normal pregnancy. *Am J Reprod Immunol* **37**, 368-377 (1997).
- 412 18. Savas, P., et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. *Nat Med* **24**, 986-993 (2018).

- 414 19. Mackay, L.K., *et al.* Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. *Proc Natl Acad Sci U S A* **109**, 7037-7042 (2012).
- 417 20. Snyder, M.E., *et al.* Generation and persistence of human tissue-resident memory T cells in lung transplantation. *Sci Immunol* **4**(2019).
- 419 21. Santucci-Pereira, J., et al. Genomic signature of parity in the breast of premenopausal women. *Breast Cancer Res* **21**, 46 (2019).
- 421 22. Cansever, D., et al. Lactation-associated macrophages exist in murine mammary tissue and human milk. *Nat Immunol* **24**, 1098-1109 (2023).
- 423 23. Mackay, L.K., *et al.* T-box Transcription Factors Combine with the Cytokines TGF-beta and IL-15 to Control Tissue-Resident Memory T Cell Fate. *Immunity* **43**, 1101-1111 425 (2015).
- 426 24. Casey, K.A., et al. Antigen-independent differentiation and maintenance of effector-427 like resident memory T cells in tissues. *J Immunol* **188**, 4866-4875 (2012).
- 428 25. Di Pilato, M., *et al.* CXCR6 positions cytotoxic T cells to receive critical survival signals in the tumor microenvironment. *Cell* **184**, 4512-4530.e4522 (2021).
- 430 26. Martinson, H.A., Jindal, S., Durand-Rougely, C., Borges, V.F. & Schedin, P. Wound 431 healing-like immune program facilitates postpartum mammary gland involution and 432 tumor progression. *Int J Cancer* **136**, 1803-1813 (2015).
- 433 27. Pan, J.W., et al. The molecular landscape of Asian breast cancers reveals clinically relevant population-specific differences. *Nat Commun* **11**, 6433 (2020).
- 435 28. Pan, J.W., et al. Clustering of HR + /HER2- breast cancer in an Asian cohort is driven by immune phenotypes. *Breast Cancer Res* **26**, 67 (2024).
- 437 29. Yoshihara, K., et al. Inferring tumour purity and stromal and immune cell admixture from expression data. *Nat Commun* **4**, 2612 (2013).
- 439 30. Salgado, R., *et al.* The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. *Ann Oncol* 441 **26**, 259-271 (2015).
- 442 31. Curtis, C., et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. *Nature* **486**, 346-352 (2012).
- 444 32. Liu, J., et al. An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-445 Quality Survival Outcome Analytics. *Cell* **173**, 400-416.e411 (2018).
- Plaks, V., et al. Adaptive Immune Regulation of Mammary Postnatal Organogenesis.
 Dev Cell 34, 493-504 (2015).
- 448 34. Galati, F., et al. Pregnancy-Associated Breast Cancer: A Diagnostic and Therapeutic Challenge. *Diagnostics (Basel)* **13**(2023).
- 450 35. Amant, F., et al. The definition of pregnancy-associated breast cancer is outdated and should no longer be used. *Lancet Oncol* **22**, 753-754 (2021).
- 452 36. Murphy, T.L. & Murphy, K.M. Dendritic cells in cancer immunology. *Cell Mol Immunol* 453 **19**, 3-13 (2022).
- 454 37. Jaquish, A., et al. Mammary intraepithelial lymphocytes and intestinal inputs shape T cell dynamics in lactogenesis. *Nat Immunol* **26**, 1411-1422 (2025).
- 456 38. Im, S.A., et al. Results from the randomized KEYNOTE-355 study of pembrolizumab 457 plus chemotherapy for Asian patients with advanced TNBC. *NPJ Breast Cancer* **10**, 79 458 (2024).

- Wang, H., et al. The microbial metabolite trimethylamine N-oxide promotes antitumor immunity in triple-negative breast cancer. *Cell Metab* **34**, 581-594.e588 (2022).
- 462 40. Cereser, B., et al. The mutational landscape of the adult healthy parous and nulliparous human breast. *Nat Commun* **14**, 5136 (2023).
- 464 41. Lowenfeld, L., et al. Dendritic Cell Vaccination Enhances Immune Responses and
 465 Induces Regression of HER2pos DCIS Independent of Route: Results of Randomized
 466 Selection Design Trial. Clinical Cancer Research 23, 2961-2971 (2017).
- 467 42. Strickley, J.D., et al. Immunity to commensal papillomaviruses protects against skin cancer. *Nature* **575**, 519-522 (2019).
- 43. Datta, J., et al. Progressive loss of anti-HER2 CD4(+) T-helper type 1 response in breast tumorigenesis and the potential for immune restoration. *Oncoimmunology* **4**, e1022301 (2015).
- 472 44. Chakraborty, B., et al. Estrogen Receptor Signaling in the Immune System. *Endocr* 473 *Rev* 44, 117-141 (2023).
- 474 45. Coles, C.E., *et al.* The Lancet Breast Cancer Commission. *Lancet* **403**, 1895-1950 (2024).

Main Figure Legends

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

477

Figure 1. Parity is associated with a significantly increased T cells in cancer unaffected human breast.

a. Immune cell abundance in normal breast from scRNAseq (Y-axes: cell type frequency) calculated by indicate immune cells over total epithelial cells in average BC risk women (n=170). Violin plots show data distribution with boxplots indicate IQR (Interquartile range) extension from Q1 to Q3 and median as a white bar, whiskers extend to the most extreme dot point within 1.5xIQR, and points beyond show outliers. Two-sided Wilcoxon rank sum test, unadjusted p-value shown; total cells=985,662; CD45+=120,467 from nulliparous (N, n=53) vs parous (P, n=117). CD3+ (n=72,288 cells) in (N, n=53) vs (P, n=115). CD8+ (n=38,834cells) in (N, n=53) vs (P, n=114) and CD8 $^+$ T_{RM} (n=18,963 cells) in (N, n=53) vs (P, n=114). **b.** Proportions of CD45+, CD3+, CD8+ T cells over total cells and CD69+CD103- and CD69+CD103+ T cells over total CD45RA-CCR7-CD8+ T cells (Y-axes) by flow cytometry (N; n=25) and (P; n=65) normal breast in high BC risk women. (N vs P defined as 1 or more fullterm pregnancies); refer to methods for further details; two-sided Wilcoxon rank-sum test, unadjusted for multiple comparisons. c. Representative OPAL images of N vs P normal breast stained for DAPI, (AE1/AE3), CD3, CD8, CD69, and CD103. Green indicates representative CD8⁺ and white indicates merged CD69⁺CD103⁺CD8⁺CD3⁺ T cell; refer to methods for further details d. Persistence of CD69+CD103-vs CD69+CD103+CD8+T cells over time (X-axis) years from last live birth to human breast donation (n=65). Datapoints coloured according to age <50 or >50 for menopausal status. Unadjusted two-sided p value. e. Volcano plot of breast CD69⁺CD103⁺CD8⁺ vs autologous circulating CD8⁺ T cells from non-cancerous parous women (n=3). Significantly upregulated genes in CD69+CD103+CD8+ (limma test, FDR<1%, logFC>1): referred as parous breast (PB)-T_{RM} signature, **f.** GSEA of PB-T_{RM} signature from normal breast 109) women (N, n=30 vs P, n=79) from Santucci et al²¹. Exact p values are shown.

Figure 2: Complete lactation and involution significantly increased CD8⁺ T cells in healthy murine mammary tissue.

a. Experimental schema of parity b. Donut plots indicating immune cell frequency among CD45⁺ cells in the mammary fat pad (MFP) analysed by flow cytometry from virgin (n=9) and d28-inv (n=12) C57BL/6 healthy mice, highlighting the CD8a⁺CD44^{hi}T cells in green colour. c. Number of indicated immune cell sub-populations per gram of MFP from virgin (n=9) and d28-inv (n=12) C57BL/6 mice. d. Number of indicated immune cell sub-populations per gram of MFP from virgin (n=8) and d28-inv (n=8) BALB/c mice. e. Number of indicated immune cell sub-populations per gram of MFP from virgin (n=8) and d10-FW (n=8) C57BL/6 mice. f. UMAP of CD8a⁺ T cells generated from flow cytometry data from the MFP of C57BL/6 virgin (n=8) and d28-inv (n=9) mice with three enriched clusters indicated. Each dot represents an individual cell. g. Feature plots of indicated markers on CD8a⁺ T cells projected on UMAP. Data in graphs represent mean ±SEM, results represent two combined biologically independent experiments. Statistical significance determined by two-sided (c-e) or one sided (f) Mann-Whitney test. Exact p values are shown or p < 0.0001 in instances where p values are extremely small.

Figure 3: Lactation and involution restrain tumour growth and is significantly associated with increased murine mammary CD8⁺ TILs

a. Tumour growth (left) curves and endpoint tumour volume (right) of AT3-OVA TNBC cells injected into the 4th MFP of in d10-FW (n=7) and age-matched virgin control (n=7) C57BL/6 mice. **b.** Tumour growth (left) and endpoint tumour volume (right) of AT3-OVA cells in d28-inv (n=8) and age-matched virgin control (n=8) C57BL/6 mice. **c.** Tumour growth (left) and endpoint tumour volume (right) of D2A1 cells injected into d10-FW (n=9) and age-matched virgin control BALB/c mice (n=10). **d.** Tumour growth (left) of D2A1 cells in d28-inv (n=10) and age-matched virgin (n=11) control mice and endpoint tumour volume (right) of d28-inv (n=5) and age-matched virgin (n=6) BALB/c mice. **e.** Donut plot of immune cell frequency analysed

by flow cytometry among all CD45⁺ cells in AT3-OVA tumours from virgin (n=9) and d28-inv (n=10) mice 23-25 days post BC tumour cell injection. **f.** Ratio of CD8⁺ to CD4⁺ T cells and frequency of CD8⁺ T cells among all CD45⁺ cells AT3-OVA tumours from virgin (n=9) and d28-inv (n=10) mice. **g.** Numbers of indicated immune cell sub-populations per gram of AT3-OVA tumour from virgin (n=9) and d28-inv (n=10) C57BL/6 mice. Data in graphs represent mean ±SEM, results represent two combined independent experiments. Statistical significance determined by two-sided Mann-Whitney test. Exact p values are shown or p < 0.0001 in instances where p values are extremely small.

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

531

532

533

534

535

536

537

538

Figure 4: Parity induced protection against breast cancer is mediated by CD8⁺ T cells a. AT3-OVA tumour growth (left) and endpoint tumour burden (right) in the 4th MFP of RAG2-/-yc-/- mice in d28-inv (n=13) and age-matched virgin controls (n=14). **b.** AT3-OVA tumour growth (left) and endpoint tumour burden (right) in the 4th MFP of RAG2-/-yc-/- mice preinoculated with OT-I cells seven days prior to mating in d28-inv (n=11) and matched controls (n=10). **c.** Numbers of indicated immune cells per gram of AT3-OVA tumour from virgin (n=6) and d28-inv (n=6) RAG2-/-yc-/- mice at four weeks post tumour development. d. AT3-OVA tumour growth in the 4th MFP of C57BL/6 mice in virgin (left) and d28-inv (right) mice treated with anti-CD4 (virgin n=12; d28-inv n=13), anti-CD8α (n=9), anti-CD8β (virgin n=12; d28-inv n=14), and combined anti-CD4/CD8a (n=14) or isotype control (n=16). e. Endpoint AT3-OVA tumour weight of AT3-OVA of C57BL/6 mice in virgin (left) and d28-inv (right) mice depleted with anti-CD4 (virgin n=12; d28-inv n=13), anti-CD8α (n=9), anti-CD8β (virgin n=12; d28-inv n=14), and combined anti-CD4/CD8a (n=14) or isotype control (n=16). f. Number of CD3⁺T cells per ul blood in virgin and d28-inv C57BL/6 mice treated with FTY720 (n=8) or vehicle (n=8). **g.** AT3-OVA tumour growth post FTY720 treatment in the indicated time points (virgin n=11; d28-inv n=15) or vehicle (virgin n=12; d28-inv n=15). h. Endpoint AT3-OVA tumour weight in virgin and d28-inv C57BL/6 mice treated with FTY720 (virgin n=11; d28-inv n=15) or vehicle (virgin n=12; d28-inv n=15). i. Number of OVA-tetramer⁺ T cells per gram of AT3-OVA

tumour (virgin n=10; d28-inv n=13) or vehicle (virgin n=10; d28-inv n=15) analysed 23-25 days post treatment. Data in graphs represent mean \pm SEM from two combined independent experiments. Two-sided Mann-Whitney test (a-c), Two-Way ANOVA at endpoint (d,g), Kruskal-Wallis (f,i) or One-Way ANOVA. Exact p values are shown or p < 0.0001 in instances where p values are extremely small.

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

558

559

560

561

562

Figure 5: Parity and breastfeeding are associated with increased TILs in women with primary TNBC.

a. Effect of parity on subsequent tumour immune infiltration calculated with RNASeg based (ESTIMATE) score in MyBrCa cohort. Linear model for ESTIMATE score with parity and sequencing batch as covariates. β is the estimated non-standardised coefficient for parity with 95% CI. b. Immune (ESTIMATE) score from MyBrCa with known breastfeeding (BF) status prior to BC. ANOVA with breastfeeding status and sequencing batch as covariates; two-sided, 95% CI, mean difference shown by Tukey's HSD test. p values adjusted for intrasubtype comparisons only. **c.** GSEA of the PB-T_{RM} signature in parous vs nulliparous women in the MyBrCa basal cohort. d. GSEA of the PB-T_{RM} signature in breastfed compared to nonbreastfed (no-BF) parous women in MyBrCa basal cohort. e. Intratumoural T cell density in Basal-like BC determined by immunohistochemistry for CD8+ and CD3+ in MyBrCa, comparing N vs P women by breastfeeding durations prior to BC. Percent CD8⁺ and CD3⁺T cell density quantified as ratio of stain-positive pixels to all pixels within tumour margins. Modelled with βregression adjusting for covariates of age at diagnosis and tumour grade. Presented unadjusted p values with average marginal effect (AME) for each group compared to N. f. Kaplan–Meier survival analysis of overall survival in women (n = 270) diagnosed post-partum with primary hormone receptor-negative BC, stratified by breastfeeding status (Yes vs No). Univariate Cox regression hazard ratio with 95% Cl. g. Quantity of stromal tumour infiltrating lymphocytes (TIL) quantified on standard H&E-stained digital slides from primary hormone receptor-negative high familial risk women (n=136). Age-adjusted percentage

infiltration (y-axis) by breastfeeding duration (x-axis; **SI. Table 4**). Horizontal lines indicate medians, vertical lines the IQR. Group differences tested with Kruskal–Wallis. (a,b,e) box plots horizontal bar shows median, hinges represent IQR and whiskers extend to the most extreme dot point within 1.5xIQR, and points beyond show outliers. Exact p values are shown.

591 Methods

Patient samples

This project was approved by the Human Research Ethics Committee of the Peter MacCallum Cancer Centre (project approval number "SEGMENT" 13/123 and 97/27 for the Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer (kConFab) with project approval numbers #129 and #150). All participants provided written informed consent prior to tissue and blood collections. Ethics approvals for the human MyBrCa cohort can be found in the originating publication Pan *et al* 2024.

Tissue processing of Human Normal Breast

Cancer-unaffected normal breast tissues were collected from prophylactic mastectomies from women from high-risk familial cancer families. Mammary tissues were divided into segments and either placed in neutral buffered formalin for processing to formalin fixed paraffin embedded blocks, or a single cell suspension was created for further processing. Briefly, adipose tissue was removed from mammary glands and the associated connective tissues were then finely diced into smaller fragments in RPMI1640 containing, 1 mg/ml collagenase type 4 (Worthington biochemical, Lakewood, NJ), 30U/ml DNase (Roche diagnostics, Indianapolis, IN, USA) and incubated for 30 minutes at 37°C. Digested tissue fragments were teased through a 70-um sterile cell strainer, the sieve irrigated with Dulbecco's phosphate-buffered saline (PBS) and the homogenised cells collected into multiple 50ml conical tube. Pelleted cells were stained with monoclonal antibodies for immunophenotyping and resuspended in 2% paraformaldehyde (PFA) buffer for flow cytometric spectral analysis.

Antibody labelling human cells for FACS

Homogenised cells in suspension were labelled with monoclonal antibodies for 30 minutes at 4°C in FACS buffer (2% fetal bovine serum in Dulbecco's PBS), washed twice in FACS wash buffer. Antibody panel included CD45 and HLA-ABC to discriminate lymphocytes from other

stromal and epithelial cell compartments in suspension, T cell markers CD3, CD4 and CD8, the T cell differentiation markers CCR7, CD45RA, CD69 and CD103. Viable cells were revealed using the fixable zombie red, PE-Tex-red or fixable yellow viability dyes (Biolegend, San Diego, CA). Compensation controls were prepared for each antibody using UltraComp beads (BD Biosciences, San Diego, CA, USA). Multi-parameter flow cytometry data was acquired on the BD FACS Symphony A5 or LSR Fortessa X-20 instrument (BD Biosciences, San Diego, CA, USA) and data analysed using FlowJo v10 (BD Biosciences, San Diego, CA, USA). A representative flow cytometry gating strategy of immune cells in human normal breast tissue is shown in **Extended data Figure 10a.**

Human normal breast data analysis

Two-sided Wilcoxon rank-sum tests were used to compare parous and nulliparous groups across different T cell sub-populations. beta regression was used to model the interval from last birth to tissue donation and how this affected CD8+CD103- and CD8+CD103+ T cells, as implemented in the betareg R package (v3.2-1). Regression lines fitted using beta regression, controlling for age at tissue donation, with 95% confidence intervals shaded. Average Marginal Effect (AME) for trend over time, representing change in % abundance per 1 year increase in birth to donation interval (**Main Fig. 1d**). Age at tissue donation was included as a continuous covariate. The AME of the interval since last pregnancy was estimated using the 'margins' function from the margins R package (v0.3.28), interpreted as the average change in cell proportion per year increase in the interval, averaged over the empirical distribution of age at tissue donation. To represent model fit on plot and calculate confidence intervals, the fitted beta regression model was supplied to the 'ggpredict' function of the ggeffects R package (v2.2.1).

Murine tissue processing and FACS

Spleens were mashed through a 70-um cell strainer and incubated with red cell lysis buffer for 5 minutes are room temperature prior to staining. Murine mammary tissue with lymph nodes

removed or tumour were minced into fragments and incubated in RPMI1640 containing, 1 mg/ml collagenase type 4 and DNAse II at 0.2 mg/mL for 30 minutes at 37°C with shaking (300 rpm). Cells were serially passed and washed through 70-um strainers followed by viability staining in PBS then FcR blockade (2.4G2) at 1:500 dilution for 10 minutes at room temperature and prior to FACS staining with surface FACS antibodies in FACS wash buffer (4% FCS, 2 mM EDTA) containing BD Horizon Brilliant Stain Buffer Plus (BD). Post staining with antibody cocktail for 30 minutes at room temperature, samples were washed twice with FACS wash buffer and fixed with Foxp3/Transcription Factor Staining Buffer Set (Invitrogen) as per the manufacturer's instructions. Samples were either resuspended in 2% PFA or underwent intracellular staining in Foxp3/Transcription Factor permeabilization buffer followed for 30 minutes at room temperature. Intracellular stained samples were washed twice and resuspend in 2% PFA. Samples were analysed on a BD Symphony FACS analyser or 5-laser Cytek Aurora. Data was analysed using FlowJo v10 or OMIQ cloud-based platform. OMIQ was used for high dimensional analysis. Data was scaled using hyperbolic arcsine (asinh) transformation and clustered using Phenograph. For high dimensional analysis of immune cells in the mammary fat pad TCR $\gamma\delta^+$ and CD1d $^+$ cells were excluded and CD45 $^+$ TCRβ⁺ CD8α⁺ cells were clustered based on the expression of Granzyme B, CD38, CD62L, TCF-1, CD49a, NK.1, CD8\(\beta\), Slamf6, CD103, CD44, Ly6C, KLRG1, CXCR3, CD39, PD1, CD244, Tbet, CD69, CXCR6, CD8a and Granzyme A. For high dimensional analysis of immune cells in AT3-OVA tumours CD45+ cells were clustered based on the expression of CD19, NK1.1, CD3, TCRb, TCRγδ, CD8α, CD8β, CD4, CD44, CD62L, CD69, CD103, CD49a, CD11b, CD11c, F480, MHC-II, Siglec-F, XCR1, SIRPa, CX3CR1, CD64, CD39, OVAtetramer, PD-1, PD-L1, LAG3, KLRG1, CD38, FOXP3, Tbet, TCF-1, CTLA-4.

668

669

670

671

672

667

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

Bulk RNAseq gene expression analysis

Cancer unaffected normal breast tissue associated CD69+CD103+CD8+ T cells and autologous blood derived CD8+ circulating T cells (5x103-1x104 cells) were FACS purified, BD

FACSAria II Cell Sorter (BD Biosciences). Reanalysis of isolated CD8⁺T cell sub-populations following FACS were assessed for >90% purity of individual samples. Total RNA was extracted from indicated T cell sub-populations from n=3 pooled cancer unaffected normal breast tissue using the RNeasy mini kit (Qiagen, Netherlands) as per the manufacturer's instructions. RNA Tape Station (Agilent, USA) analysis was performed as per the manufacturer's instructions to assess the quantity and quality of RNA present in the sample. 2-5 ng used for RNA library preparation according to the manufacturer's instructions with ribodepletion NEB. The library was then amplified with 3' PCR primers containing sample indices and the Illumina clustering guides. 10X lysis Buffer is a cell lysis buffer that can be used together with the SMARTer Ultra Low Input RNA Kit for Sequencing v3 and the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing. Indexed libraries were pooled and sequenced on Illumina NextSeq HO 75SE (Illumina). Two to five million single-end reads were generated as an output. Adaptor trimming was performed, and reads were aligned to the mm10 reference genome using HISAT2 (v2.2)⁴⁶. Aligned reads were quantified using HTSeq (v2.0.3). Counts were normalised and unwanted variance introduced by library size differences was removed using RUV-III (v0.9.7.1) in R. Differential expression analysis was performed using limma (v3.60.3). Volcano plots were produced with custom code with ggplot2 (v3.5.1). The PB-T_{RM} signature derived from differential expression analysis by filtering the genes by FDR<1% and logFC>1. A gene expression dataset of pre-menopausal parous and nulliparous human breast tissue was accessed GEO: GSE112825 We used limma47 to analyse the previously normalised expression and perform differential expression analysis of parous against nulliparous women. To detect enrichment of our derived PB-T_{RM} gene signature, we performed gene set enrichment analysis (GSEA) using the differential expression results with the fgsea (v1.30.0) library in R $(v4.4.1)^{48}$.

697

698

699

700

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Single cell cohort from Reed et al.

The processed and annotated single cell normal breast tissue atlas presented by Reed *et al* 2024 was used, only cells annotated as "not sorted" or "live sorted" were collated from several

different datasets of normal human breast tissue. We used samples from women annotated as "average risk" or "unknown risk" of breast cancer- i.e. normal breast samples from reduction mammoplasties and not cancer mastectomies or prophylactic mastectomies and where parity status was known.

To calculate and compare abundance of normal breast cell types between parous and nulliparous women, we calculated ratios of CD3⁺T cells, CD8⁺ T cells and CD8⁺ T_{RM}-like cells over total epithelial cells per sample compared using unpaired Wilcoxon test and shown Violin plots produced in R (v4.4.1). We conducted a focused analysis on the CD8⁺ T cells performing integration with Harmony (v1.2.3)⁴⁹ using default parameters (using dataset and donor as covariates), dimensionality reduction and visualisation with Seurat (v5.2.1)⁵⁰. We used the scaled gene counts and calculated single cell signature enrichment of the PB-T_{RM} signature using the AUCell (v1.28.0) package in R⁵¹. We compared single cell enrichments of two different previously annotated CD8⁺ T cell sub-populations (T_{EM and} T_{RM}-like) using the unpaired Wilcoxon rank-sum test.

Murine cell lines

AT3-OVA cells were provided by Prof. Phil Darcy (Peter MacCallum Cancer Centre, Melbourne, VIC, Australia). D2A1 cells⁵² were provided by A/Prof. Kara Britt (Peter MacCallum Cancer Centre, Melbourne, VIC, Australia). AT3-OVA TNBC cells were generated by transducing the parental AT3 cell line with a retroviral vector pMIG/MSCV-IRES-eGFP plasmid encoding membrane-bound chicken ovalbumin (OVA) cDNA (model antigen) protein, tagged with GFP as previously described⁵³. Both cell lines were well established from Peter MacCallum Cancer Centre laboratory stocks and published. Breast cancer cells were cultured with complete DMEM media supplemented with 10% FCS. For *in vivo* experiments, 2.5x10⁵ AT3-OVA or 1x10⁴ D2A1 cells at an early passage state were resuspended in 50 μL phosphate buffer saline (PBS) solution at neutral pH and injected orthotopically into the right 4th mammary fat pad (MFP) of mice. Cell lines were verified to be mycoplasma negative at the Victorian

Infectious Diseases References Lab (Melbourne, VIC, Australia) and were maintained at 37°C in a humidified incubator at 5% CO₂.

Mouse tumour and parity models

All animal experiments conducted in this study were approved by the relevant Peter MacCallum Cancer Centre Animal Experimentation Ethics Committee (E648, 2025-05) or by The University of Melbourne Animal Ethics Committee (21938) and conducted in accordance with the National Health and Medical Research Council Australian Code of Practice for the Care and Use of Animals for Scientific Purposes.

C57BL/6J wild type (wt), BALB/c wt, RAG2-γ-γ-c-, RAG1-γ-, gBT-I and OT-I CD45.2 wt female mice were obtained from the Walter and Eliza Hall Institute of Medical Research or bred inhouse (VIC, Australia). Mice were allocated to experiments at 7-8 weeks of age. For tumour models, volume (length x width² x 0.5) was calculated by vernier caliper following development of palpable tumours and measurements were taken every 3-4 days. Mice were euthanised when MFP tumours reached an ethical limit of up to 1500 mm³, or if the animals showed any signs of adverse health indications as per Peter MacCallum cancer center institutional guidelines. For parity experiments, dams were whitened prior to the introduction of stud males to establish breeding pairs/trios. Pregnancy was confirmed by plug formation and studs removed. After littering, dams underwent complete lactation and with pups for 21 days and for forced wean experiments pups were removed at birth within 12-24 hours from the dams postpartum and sacrificed ("d10-FW" timepoints). Dams that underwent early pup-removal were immediately co-housed with other female mice and did not exhibit changes in social behavior, housing conditions for the mice were followed as per institutional guidelines, including dark/light cycle, ambient temperature and humidity conditions.

Adoptive transfer of transgenic T cells

OT-I cells were isolated utilising the negative immunomagnetic cell separation method, MACS (Stem cell Technologies, Vancouver, BC) from the spleen of wildtype OT-I CD45.2 donor mice. A total of 2.5 x 10⁵ OT-I cells were intravenously transferred to recipient RAG2^{-/-}γc^{-/-} mice, seven days before mating and in house breeding began. OT-I cells were immunophenotyped by flow cytometry to assess the purity of OT-I cell isolation (>90-95%) with the use of CD45.2, TCR-vα2, CD8α, CD44 and CD62L cell surface markers. For experiments with effector OT-I cells, T cells were activated in culture for 4 days with OVA₂₅₇₋₂₆₄ (SIINFEKL) peptide-pulsed, irradiated (50Gy) splenocytes in the presence of recombinant human IL-2 (25U ml⁻¹; PeproTech) at 37°C and 5% CO₂ and 1 x 10⁴ were injected intravenously (i.v.) per mouse. For the gBT-I experiment HSV-specific gBT-I transgenic T cells were activated in culture for 4 days with gB₄₉₈₋₅₀₅ (SSIEFARL) peptide-pulsed, irradiated (50Gy) splenocytes in the presence of recombinant human IL-2 (25U ml⁻¹; PeproTech) at 37°C and 5% CO₂. 20x10⁶ activated gBT-I cells were injected i.v. into naïve Rag1^{-/-} mice. 56-62 days following gBT-I cell transfer, mice were subsequently inoculated orthotopically with 5x10⁵ AT3-OVA cells into the 4th MFP as described above.

T cell depletion experiments

- 773 C57BL/6 mice were mated as described above prior to being allocated to tumour experiments.
- 774 Seven days prior to AT3-OVA tumour challenge nonrandomised mice were injected
- intraperitoneally (i.p.) with 200 µg IgG2 isotype control combined with 200 µg anti-CD4 (Clone
- 776 GK1.5, Bio X Cell Leganon, USA) anti-CD8a (Clone YTS, Bio X Cell,) anti-CD8b (Clone 53-
- 5.8, Bio X Cell,) or 400 µg lgG2 isotype control (Bio X Cell) twice then once weekly.

Fingolimod (FTY720) in vivo treatments

- C57BL/6 mice were mated as described above prior to being allocated to tumour experiments...
- Briefly, three days prior to AT3-OVA challenge mice were injected i.p. with 1 mg/kg FTY720
- compound reconstituted in 2% 2-hydroxypropyl-beta-cyclodextrin (Merck) or vehicle control

(2% 2-hydroxypropyl-beta-cyclodextrin) with daily injections separated by one day breaks every five days.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

783

784

Murine histology and OPAL analysis

Intact 4th mammary fat pad of C57BL/6 mice were fixed in 10% neutral buffered formalin for 24 hours and then processed and embedded into formalin-fixed paraffin embedded (FFPE) blocks. 4-µm-thick sections were cut from blocks and mounted onto SuperFrost+ slides. Multiplex immunohistochemistry (m-IHC) staining using OPAL fluorophores was then performed according to the manufacturer's instructions (Akoya Bioscience, Marlborough, MA. USA). Briefly, the reagents were loaded into the Bond Rx Autostainer (Leica Biosystems, Wetzlar, Germany) for an entire cycle of approximately 12 hours. Tissue sections were baked, dewaxed and incubated in a 3% hydrogen peroxide (H2O2) solution (Merck EMSURE, Germany) to block endogenous peroxidases in the tissues. Subsequently slides were incubated with 1% bovine serum albumin (BSA) in Tris-Buffered Saline to block non-specific background binding. Slides were incubated iteratively with the primary antibodies including CD8 (1:4000 pH9), CD3e (1:600 pH6), CD103 (1:2000 pH9), for 30 min, the secondary antibody (OPAL polymer HRP Mouse + Rabbit) for 10 min, and the Tyramide conjugated OPAL fluorophores (570, 690 (1:150) and 780 (1:25) for 10 min. Finally, slides were incubated with spectral DAPI for 10 min. All antigen retrieval were performed at 97°C for 20 min whilst all other steps were performed at ambient temperature. Following the completion of staining, the slides were briefly rinsed in milliQ water and then manually cover slipped using Prolong Glass Antifade Mountant (Invitrogen, Carlsbad, USA).

805

806

807

808

809

810

The stained 4-plex OPAL m-IHC slides were imaged on the Phenoimager HT imaging system (AKOYA Biosciences, USA). The whole tissue section was spectrally imaged with on 20x objective. The optimal exposure settings were manually set for each tissue. Whole slide images were then unmixed to subtract auto-fluorescent signal and images exported as component tiffs using InForm software (v2.6.0, AKOYA biosciences, USA). Briefly, the

spectral library was created using multispectral images obtained from single stained slides for each marker and the associated fluorophore (DAPI, OPAL 570, 690 and 780) on InForm software (v2.6.0, AKOYA biosciences, USA) for downstream image analysis workflow. For Masson's trichrome staining 4-µm-thick sections were cut from FFPE blocks and incubated in Bouin's fixative for 60 minutes at 60°C, washed in water and stained with haematoxylin. Slides were washed and stained with 1% Ponceau 2 R and 1% Acid fucshin for 2 minutes. Slides were washed with water stained with 2% light green in 1% acetic acid for 5 minutes, washed with water, dehydrated and cover slips mounted.

Human histology and OPAL analysis

Human breast tissue preparation

Immune cells were interrogated to visualise the expression of CD3, CD8, CD69, CD103, and pan-cytokeratin (AE1/AE3) in cancer unaffected normal breast tissue, using the OPAL[™] serial immunostaining protocol. Briefly, formalin-fixed paraffin embedded (FFPE) tissue sections were cut at 4um thickness and melted at 60°C for 45 minutes, followed by dewaxing in 3 changes of histolene for 11 minutes and 3 changes of 100% ethanol for 1 minute each and 70% alcohol for 1 minute. Leica Bond auto-stainer protocol was followed as per manufacturer instructions.

Antigen retrieval process

Heat-induced antigen retrieval was achieved using a microwave. Tissue sections were placed in a plastic hellendahl jar (Trajan Scientific Australia) in EDTA (pH 8) antigen retrieval buffer and citrate buffer (pH 6) antigen retrieval buffer for CD3 staining and brought to the boil at a 100% power for 50 seconds and at 10% power for 15 minutes. Tissue sections were then left to cool for 30 mins and washed in 0.02% TBST 3 times at 7 minutes each with gentle agitation.

Primary antibody staining

Sections were blocked in blocking buffer (Dako, X0909) for 10 minutes at room temperature prior to incubation with primary antibodies, or isotype controls. Sections were incubated for 30 mins at room temperature with mouse anti-human pan-cytokeratin (AE1/AE3); 1:1000 at Opal 480 (Isotype: mouse IgG1), rabbit anti-human CD3e (SP7); 1:500 at Opal 690 (Isotype: rabbit IgG), mouse anti-human CD8(4B11); Leica; 1:800 at 570 – 1:500 at Opal 570 (Isotype: mouse IgG2b),rabbit anti-human CD69 (EPR21814); Abcam at Opal 520 (Isotype: rabbit IgG), rabbit anti-human CD103 (EPR416602);Abcam; 1:1000 at Opal 780 (Isotype: rabbit IgG and cell-permeable DNA-binding dye (DAPI) obtained from Abcam. Following primary incubation; sections were washed in 0.02% TBST 5 times for 5 minutes each. Tissue sections were then incubated in 0.3% H₂O₂ for 10 mins following the first primary antibody incubation and washed in 0.02% TBST 3 times for 5 minutes each. Respective isotype antibody control expression was examined under similar conditions and were tested on matched human normal breast and in human tonsil lymphatic tissues.

Secondary antibody detection

All sections were incubated with secondary-HRP conjugated antibodies (Leica Bond autostianer protocol) at a dilution of 1:1000 for 10 mins at room temperature. Sections were washed 3 times for 5 minutes each in 0.02% TBST followed by signal amplification using 100ul of TSA Plus working solution per slide at a dilution of 1:50 in 1x amplification diluent, incubated at room temperature for 10 mins as specified by the manufacturer (Opal 6-Plex Manual Detection Kit - for Whole Slide Imaging, AKOYA, USA). Nuclei were counterstained with DAPI as per manufacturer instructions diluted from 10x spectral DAPI (AKOYA, USA) for 2 mins at room temperature. Sections were then washed twice in 0.02% TBST for 2 minutes each and mounted in Vecta shield hard set medium (Vector, USA) and left to dry flat for 20 mins in the absence of light.

Microscopy image analysis

OPAL multiplex immunohistochemistry (m-IHC) slides were imaged on the Pheno Imager HT (Polaris) (AKOYA Biosciences, USA). The acquired images were spectrally unmixed using inform v2 (AKOYA Biosciences, USA) into individual component tiff files. Whole slide images were then stitched in the HALO Image Analysis Platform version 3.6.4134 (Indica Labs, Inc., NM; USA). For human tissue, quantification of immune cells, specifically the CD8⁺ T cell subpopulations in the mammary epithelial dense regions after excluding adipose dense regions across the entire tissue was performed using the HighPlex FL v4.2.3 module. For murine tissue, quantification of immune cell subsets was performed using the HighPlex FL v4.2.3 module after excluding lymph node regions within the surrounding tissues of interest. For distance between ECAD⁺ epithelial cells and CD8⁺CD103⁺ T cells nearest neighbour was calculated on HALO Image Analysis Platform version 3.6.4134. Masson's trichrome positive staining was quantitated using QuPath 0.6⁵⁴.

RNA extraction and RT-qPCR analysis

Mammary fat pad tissue from C57BL/6 mice was manually minced and then homogenised in 500 μL TRIzol using metal bead lysing matrix (MP Biomedicals) on a FastPrep-24™ bead beating grinder and lysis system (MP Biomedicals). RNA was extracted from the homogenised tissue using the PureLink RNA Mini Kit (Invitrogen) as per the manufacturer's instructions. Total RNA was then quantified using a NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific). First-strand complementary DNA (cDNA) was synthesised from extracted RNA using the SuperScript IV VILO Master Mix with ezDNase enzyme (Invitrogen) following the manufacturer's instructions. This was performed on a T100 Thermal Cycler (Bio-Rad). RT-qPCR was performed on the synthesised cDNA to assess relative gene expression using the TaqMan Gene Expression Assay with primers targeting *Gapdh*: Mm99999915_g1, *Tgfβ2*: Mm00436955_m, *Tnf*: Mm00443258_m1 and *Cxcl16*: Mm00469712_m1. All RT-qPCR reactions were performed on the StepOnePlus Real-Time PCR System (Thermo Fisher Scientific). *Gapdh* was used as the housekeeping gene. The 2-ΔΔ Ct method was used for calculating relative gene expression⁵⁵.

893

894

Human, murine reagents and antibodies

- 895 Flow cytometry antibodies used for normal breast immunophenotyping include CD45-BV510,
- 896 CD3-APCH7, CD103-BV421, CD8-BV605, PD-1-BV785, CCR7-BV711, CD3-BV711, CD4-
- 897 BV650, CD69-PerCP-Cy5-5, Zombie red-PE-Tex-Red (Biolegend, San Diego, CA); HLA-
- 898 ABC-PECy5, CD45-FITC, CD8-PE, CD45RA-FITC, (BD Biosciences, San Diego, CA).
- 899 Flow cytometry antibodies utilised for murine healthy MFP analysis and BC tumour
- 900 immunophenotyping include CD45-APCCY7, TCRβ-BB700, TCRβ-BV786, CD8-BV711,
- 901 CD8-BUV395, CD4-BUV805, CD44-BV605, CD62L-PECY7, CD62L-BUV737, CD69-
- 902 BUV395, CD69-PE, CD103-FITC, CD103-PE, CD11B-BV711, CD11C-BV786, F4/80-EF450,
- 903 MHC-II APC and Fixable dyes Fix-Yellow-BV510, Zombie NIR or Zombie red PE-Tex-Red
- 904 (Biolegend, San Diego, CA).
- Antibodies used for spectral flow cytometry immunophenotyping: CD45-PerCP, CD19-AF488,
- 906 TCRγδ-PE-Cy7, NK1.1-BV570, CD3-Spark NIR685, TCRβ-BB700, CD8α -BUV395, CD4-
- 907 BUV805, CD44-APCR700, CD62L-BUV737, CD69-PE, CD103-BV421, CD11b-BV711,
- 908 CD11c-BV785, F480-APC, Ly6G-BV650, Ly6C-BV605, MHC-II-Spark Blue 550, Siglec F-
- 909 PerCP-Fire 806, XCR1-Spark UV387, CD64-PE-Fire 744, and H-2Kb-OVA-tetramer-PE or H-
- 910 2Kb-OVA-tetramer-APC were used to detect and track CD8+ T cells specific to SIINFEKL
- 911 (OVA²⁵⁷⁻²⁶⁴) peptide from ovalbumin (OVA) expressing tumour cells. Antibodies used to
- generate the CD8a+ T cell UMAP CD49a-BUV395, NK1.1-BUV563, CD8a -RB545, CD8b-
- 913 BUV661, CD4-BUV805, Slamf6-BV421, CD103-BV480, CD44-BV510, Ly6C-BV570, KLRG1-
- 914 BV605, CXCR3-BV650, CD39-BV711, PD1-BV750, CD244-BV785, TCRγδ-BB700, CD1D-
- 915 tetramer-PE, CXCR6-PeDazzle594, CD69-PE-Cy7, CD45.2-SparkNIR685, CD62L-
- 916 APCR700, TCRβ-APC-Cy7, CD38-APC-Fire810, Granzyme A-e450, TCF1-AF488,
- 917 Granzyme B-APC, Tbet-PE/Fire810. Antibodies used to generate the AT3-OVA CD45⁺ UMAP
- 918 were CD45-PerCP, CD19-AF488, TCRγδ-PE-Cy7, NK1.1-BV570, CD3-Spark NIR685, TCRβ-
- 919 BB700, CD8α-BUV395, CD8β-BUV615, CD4-BUV805, CD44-APCR700, CD62L-BUV737,
- 920 CD69-PE, CD103-BV421, CD11b-BV711, CD11c-BV785, F480-BUV661, Ly6G-BV650,

Ly6C-BV605, MHC-II-Spark Blue 550, Siglec F-PerCP-Fire 806, XCR1-Spark UV387,CD64-PE-Fire 744, and H-2Kb-OVA-tetramer-APC, CD39-PE-Dazzle594, PD1-RY586, PD-L1 RB780, LAG3-RB744, KLRG1-BV510, CD38-APCFire810, FOXP3-e450, Tbet-PE/Fire810, TCF1-RB705, CTLA-4-PE-Fire-640. A representative flow cytometry gating strategy of immune cells in murine tissue is shown in **Extended Data Figure 10b**.

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

921

922

923

924

925

Human MyBrCa clinical dataset

The full cohort described in Pan et al 2024 was filtered to cases with available RNAseq data, complete parity information and stage 1 - 3 diseases. Where patients had multiple synchronous tumours that underwent RNAseq, one sample per patient was selected giving preference to more complete clinical metadata and basal-like subtyping. Parity was defined as at least one live birth, and pregnancy-associated cancers were not excluded. The ESTIMATE immune infiltration scores calculated in the MyBrCa publication were used unmodified. An exploratory analysis of the associations of sequencing technical factors and known clinicopathological predictors influencing immune infiltration was conducted. An effect of sequencing batch on the ESTIMATE score was observed. There was otherwise variable impact of age at diagnosis, grade and stage on the ESTIMATE score that was not consistent across subtypes. Linear models were fit for each PAM50 subtype with the ESTIMATE score as the response (non-standardised) and parity (Yes or No), age at diagnosis (continuous), grade (grade 1/2 or grade 3) and stage (I, II or III) as covariates, using the 'lm' function in R. Following this, stepwise model selection using the Akaike Information Criterion (AIC) was performed using 'step' function. 3 cases without PAM50, 20 cases contained "normal-like" classification were excluded from the analysis. Selected covariates differed across subtypes, with parity being the only selected covariate for the basal-like subtype. The most parsimonious model was therefore considered to include parity (Yes or No) and sequencing batch (1 or 2) as covariates, and this was used for the final analysis for all subtypes. 95% confidence intervals for the estimated co-efficient were calculated with the 'confint' function in R (v1.11.0).

Use of the AIC selected models with more covariates specific to each subtype did not alter the conclusion about the influence of parity on immune infiltration in basal-like cases.

For the breastfeeding analysis, cases were divided into those with any history of breastfeeding regardless of duration (BF), no history of breastfeeding (no-BF), and nulliparous cases (N). 3-way ANOVA models were fit for each subtype with the ESTIMATE score as the response (non-standardised), breastfeeding status as the grouping variable (BF, no-BF or N) and sequencing batch (1 or 2) as a covariate as above using the 'aov' function in R (v1.11.0). Homogeneity of variances between groups in each subtype was confirmed with Bartlett's test using the 'bartlett.test' function in R. Departure from normality was tested with the Shapiro-Wilk test and examination of QQ plots. This showed minor departure from normality for the basal-like group ESTIMATE scores, not considered detrimental as there are at least 30 cases in each group. Between group mean differences were tested with Tukey's Honest Significant Difference method using the 'TukeyHSD' function in R, also reporting a 95% confidence interval for the mean difference and p-value adjusted for multiple comparisons with the Tukey-Kramer method.

For GSEA in the MyBrCa dataset, RNAseq was conducted and processed to raw counts as described in Pan *et al 2024*. The RNAseq counts were normalised using RUVIII⁵⁶ to remove batch effects and other unwanted variations. We then performed differential expression analysis comparing Parous and Nulliparous Basal samples as well as Breastfeeding Parous and Non-Breastfeeding Parous with the R package limma⁴⁷. GSEA was performed using the fgsea (v1.30.0) library in R to detect gene set enrichment of the T_{RM} gene signatures, outputting a normalised enrichment score (NES) and false discovery rate (FDR).

The p values reported for subtype specific analyses were not corrected for multiple testing.

The rationale for this is that these subtypes display clearly distinct characteristics, and there is a large body of literature supporting the differential biology of these subtypes and the

variable significance of immune infiltration between them. There is no reasonable expectation of equipoise regarding the influence of parity on immune infiltration across subtypes.

Human MyBrCa Immunohistochemistry

Immunohistochemical (IHC) stained FFPE tissue sections were prepared as per a standard diagnostic workflow. Four slides per tumour sample were stained with primary antibodies targeting specific antigens: anti-CD3 (clone 2GV6, predilute; Ventana Medical Systems), anti-CD8 (clone SP57, predilute; Ventana Medical Systems), with an additional slide stained with hematoxylin and eosin (H&E). The antibody staining was conducted using a Ventana Bench Mark XT Autostainer, and stained slides were digitised using an Aperio AT2 whole slide scanner.

Semi-automated scoring of immune markers

For CD3⁺ and CD8⁺ T cell IHC scoring, Aperio Imagescope (Leica Biosystems) was used to view the scanned images and 50 annotation boxes, each of size 0.7 mm x 0.4 mm, were drawn within the borders of the invasive tumour region. The borders of the invasive tumour region were determined with reference to the H&E-stained slides. Then, the Pixel Positive v9 algorithm implemented in Aperio Imagescope was used to calculate the number of positively stained pixels within the annotation boxes at a 0.16 colour saturation threshold. The number of positive pixels was then divided by the total number of pixels within the annotation boxes to obtain the proportion of the annotated area that was positively stained for CD3⁺ and CD8⁺ immune cell types.

Human MyBrCa data analysis

beta regression was used to model the relationship between T cell density (represented as a proportion of stained to total pixels) and parity/breastfeeding, as implemented in the R package betareg (v3.2-1). Exploratory analysis determined that age at diagnosis of cancer and tumour grade were associated with T cell density, and these were used as covariates in

addition to parity/breastfeeding as predictor variable. The emmeans R package (v1.11.0) was used to calculate the average marginal effect and confidence intervals between groups.

Breastfeeding patient cohort

Patient data was acquired from kConFab⁵⁷. Women diagnosed with breast cancer over the age of 18, with a known germline pathogenic variant who were diagnosed between the years of 1980 and 2022. Only patients who had hormone receptor negative primary breast cancers, had at least 1 full term pregnancy and confirmed breastfeeding status (yes/no) were included for survival analysis. Patients who had subsequent pregnancies after breast cancer diagnosis were not included in the cohort. All relevant clinical data is shown in **SI. Table 4** Data was not blinded. Breastfeeding duration was recorded based on total length across one or more children, where available.

Stromal tumour infiltrating lymphocyte scoring

TILs were scored in accordance with the guidelines from TILs International Working Group as percentage infiltration of the tumoural stroma Salgado *et al* 2015. from digitised H&E slides. Slides were acquired for where possible (n=136/270)

To account for potential confounding effects of patient age on stromal TIL percentages, we performed an age-adjusted analysis. Stromal TIL data were obtained from the updated dataset containing clinical annotations and pathological assessments of breast cancer patients. The remaining patients were stratified into defined breastfeeding duration groups (0, <6 months, 6–12 months and >12 months).

We adjusted the stromal TIL percentages for patient age using a linear regression model, fitting stromal TIL percentage as the dependent variable and age at diagnosis as the independent predictor. Adjusted stromal TIL values were derived from the residuals of this linear model, standardised to the mean intercept value, effectively removing linear age-related

variation. A Kruskal–Wallis test was used to evaluate differences in age-adjusted stromal TIL percentages across breastfeeding groups.

Breastfeeding Patient Survival Analysis

The analysis examined the association between breastfeeding and survival outcomes utilising both univariate and multivariate Cox proportional hazards models. Survival data was censored at 15 years, resulting in 45 observed events. Univariate analyses evaluated the direct effect of breastfeeding status on overall survival, while multivariate analyses controlled for potential confounders including patient age at breast cancer diagnosis, years from breast cancer diagnosis from last live birth (≤10yrs vs >10yrs), chemotherapy treatment (Y/N), and mastectomy (Y/N). Robust variance estimates were applied, and the proportional hazards assumption was tested using the Schoenfeld residuals test.

PB-T_{RM} signature and TILs correlation

We accessed the ht-seq gene counts from TCGA using the Broad Institute Firehose platform. The counts were normalised to remove library size effects using edgeR⁵⁸. The PB-T_{RM} signature scores were computed using the genefu package⁴⁶ in R. Stromal TILs were scored for each TCGA case by a pathologist (R.S.) using whole slide H&E images according to established methods, Salgado *et al* 2015. PB-T_{RM} signature scores and TILs were correlated using the Spearman's correlation coefficient in R.

PB-T_{RM} signature score and survival

We accessed the normalised microarrays from the METABRIC study Curtis *et al* 2012 using cBioportal⁵⁹ and computed the PB-T_{RM} signature scores with genefu (2.36.0)⁴⁶. Samples were stratified into two groups around the median signature score (high vs low) and Kaplan-Meier survival estimates were compared between groups using the log-rank test. Hazard Ratios were also calculated in R using the PB-T_{RM} signature scores by fitting a Cox Proportional-Hazards regression model.

1061 Statistics, Codes and Reproducibility

All statistical analyses and the associated information relating error bars, box plots and sample size used to determine statistical significance were provided in the figure legends and statistical tools utilised were given in respective methods section. Main Fig. 1b, Proportions of CD45+, CD3+, CD8+ T cells over total cells were provided, and CD69+CD103- and CD69⁺CD103⁺ T cells over total CD45RA⁻CCR7⁻CD8⁺ T cells (Y-axes) by flow cytometry from normal breast of women with high BC risk. Horizontal bar shows median, hinges represent IQR and whiskers extend to the most extreme dot point within 1.5xIQR, and points beyond show outliers. OPAL microscopy data associated to representative Main Fig. 1c, were also verified by flow cytometry and OPAL verification cohort were repeated n=5 per group in independent (N vs P) human breast tissue samples with comparable results, single colour stained images with markers and the collated data provided in Extended Data Fig. 2a,b. All experiments were reproduced twice, and the results represent two combined biologically independent experiments unless specified. Breastfeeding patient cohort statistical information, statistical analyses of human data were conducted using R v4 and for murine data, we used Graphpad Prism v9. Violin plots, with error bars representing the IQR, were used to compare immune cell proportions. No codes or software tools were specifically developed for this study. Plots were produced with the ggplot2 R package (v3.5.1), and data input and processing were performed with dplyr 1.1.2, tidyr 1.3.0, readxl 1.4.3, readr 2.1.4 and magrittr 2.0.3.

1081

1082

1083

1084

1085

1086

1087

1060

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

Data Access

Processed and raw bulk RNA Sequencing counts resulting from FACS sorted CD69+CD103+CD8+T cells used to generate the PB-T_{RM} signature can be accessed through GEO: GSE271307. Single-cell RNA sequencing data and all associated cell annotations were available from the original publication Reed *et al* 2024¹⁵. Code associated with analyses can be accessed at https://doi.org/10.5281/zenodo.17120517. Data associated with human

normal breast and murine experimental analyses are available online under supplementary Source data. Clinical metadata and sequencing data for the human MyBrCa dataset are accessible with permission as per the original publication Pan et al 202428. Human breastfeeding data with associated overall survival and TIL scores are provided by kConFab. As this is an ongoing prospective cohort, the ethics pertaining to this data requires that data access be approved via the process described at https://www.kconfab.org/Data%20Access/AppProcess.html. using the contact details provided at https://www.kconfab.org/contact_us.html. The corresponding author (S Loi) can assist requesting parties in facilitating applications to access the data. Responses are provided within a 2-month time frame. The authors declare that all other data supporting this study are provided in the Supplementary Materials.

1099

1100

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

Methods References

1101

- 1102 46. Gendoo, D.M.A., *et al.* Genefu: an R/Bioconductor package for computation of gene expression-based signatures in breast cancer. *Bioinformatics* **32**, 1097-1099 (2015).
- 1104 47. Ritchie, M.E., et al. limma powers differential expression analyses for RNA-1105 sequencing and microarray studies. *Nucleic Acids Res* **43**, e47 (2015).
- 1106 48. Korotkevich, G., et al. Fast gene set enrichment analysis. bioRxiv, 060012 (2021).
- Hao, Y., et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. *Nature Biotechnology* **42**, 293-304 (2024).
- 1109 50. Alquicira-Hernandez, J. & Powell, J.E. Nebulosa recovers single-cell gene expression signals by kernel density estimation. *Bioinformatics* **37**, 2485-2487 (2021).
- 1111 51. Aibar, S., et al. SCENIC: single-cell regulatory network inference and clustering.
 1112 Nature Methods 14, 1083-1086 (2017).
- Bouchard, G., et al. Stimulation of triple negative breast cancer cell migration and metastases formation is prevented by chloroquine in a pre-irradiated mouse model.

 BMC Cancer 16, 361 (2016).
- Beavis, P.A., et al. Dual PD-1 and CTLA-4 Checkpoint Blockade Promotes Antitumor Immune Responses through CD4(+)Foxp3(-) Cell-Mediated Modulation of CD103(+) Dendritic Cells. Cancer Immunol Res 6, 1069-1081 (2018).
- Bankhead, P., et al. QuPath: Open source software for digital pathology image analysis. *Sci Rep* **7**, 16878 (2017).
- Livak, K.J. & Schmittgen, T.D. Analysis of relative gene expression data using realtime quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* **25**, 402-408 (2001).

- 1124 56. Molania, R., et al. Removing unwanted variation from large-scale RNA sequencing data with PRPS. *Nat Biotechnol* **41**, 82-95 (2023).
- Thorne, H., Mitchell, G. & Fox, S. kConFab: a familial breast cancer consortium facilitating research and translational oncology. *J Natl Cancer Inst Monogr* **2011**, 79-81 (2011).
- Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* **26**, 139-140 (2009).
- 1132 59. Gao, J., et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. *Science signaling* **6**, pl1-pl1 (2013).

1134

Extended Data Figure 1. Immune cell types by parity status in cancer unaffected human breast tissue

a-e. Abundance of immune cell types quantified from scRNAseq by parity status in human normal breast tissue shown as ratio of cell type in women of average breast cancer risk. Cell types are annotated as per Reed *et al*¹⁵. Y-axes indicate cell type frequency as calculated by cell sub-populations as indicated over total epithelial cells. **a**, Macrophages, n=170 women (N, n=53) vs (P, n=117), M1 and M2 macrophage cell sub-populations, n=105 women (N, n=30) vs (P, n=75). **b**, Monocytes, n=105 women (N, n=30) vs (P, n=75). **c**, Dendritic cells n=124 women (N, n=37) vs (P, n=87). **d**, B cells n=123 women (N, n=37) vs (P, n=86). **e**, Fibroblasts, n=170 women (N, n=53) vs (P, n=117), Fibroblast matrix associated cells, n=102 women, (N, n=27) vs (P, n=75) and Fibroblast SFRP4+ sub-populations, n=90 women (N, n=25) vs (P, n=65). Violin plots show data distribution with boxplots indicate IQR extension from Q1 to Q3 and median as a white bar, whiskers show minimum and maximum within 1.5 times the IQR and datapoints show outliers. Two-sided Wilcoxon rank sum test, unadjusted exact p-values are shown.

Extended Data Figure 2. OPAL image of T cells in cancer unaffected human breast

a. Representative OPAL multiplex immunofluorescence single-colour and merged images of cancer unaffected normal breast tissue from nulliparous and parous women stained for DAPI, pan-cytokeratin (AE1/AE3) CD3, CD8, CD69, and CD103. scale bar is defined on the panels. **b.** Quantification of OPAL immunofluorescence in cancer unaffected human normal breast (n=5 per group) for T cells sub-populations in mammary regions indicating density of CD3+, CD8+ and CD69+CD103+CD8+CD3+ T cells per mm² from nulliparous (N) and parous(P) women. Data in graphs represent mean ±SEM, two-sided Wilcoxon rank-sum test and dots points represent indicated immune cell quantities from independent normal breast tissue samples. **c.** Immune cell abundance (right) and enrichment of PB-T_{RM} gene signature (left) in the T_{EM} and T_{RM}-like cell clusters as annotated by originating publication Reed *et al*¹⁵. Effector

CD8⁺T cells (n=26,333 cells) from nulliparous vs parous women. Wilcoxon rank-sum test (two-sided) and unadjusted exact p-value is shown.

Extended Data Figure 3. Immune cell subsets in healthy murine mammary tissue.

a. Frequency of indicated immune cell subsets among all CD45⁺ cells from the MFP of virgin (n=9) and d28-inv (n=12) C57BL/6 mice. **b.** Number of indicated immune cell subsets per gram of MFP from virgin (n=9) and d28-inv (n=12) C57BL/6 mice. **c.** Number of indicated immune cell subpopulations per gram of MFP from virgin (n=8) and d10-FW (n=8) BALB/c mice. Data in graphs represent mean ±SEM, results represent two combined independent experiments. Statistical significance determined by two-sided Mann-Whitney test and exact p values are shown.

Extended Data Figure 4. CD8⁺T cell sub-populations in healthy murine MFP.

a.Top: UMAP of merged CD8a⁺ T cells generated by flow cytometry data from the MFP of virgin (n=8) and d28-inv (n=9) C57BL/6 mice with three enriched clusters (C1, C2, C3) as indicated. Each dot represents an individual cell. Feature plots showing expression of indicated markers projected on UMAP of CD8a⁺ T cells are presented in the bottom layout.

Extended Data Figure 5. CD8⁺T_{RM}-like cells in healthy murine MFP

a.Relative expression of indicated expressed gene transcripts relative to *GAPDH* control isolated from MFP from virgin (n=10) vs d28-inv (n=9) timepoints from C57BL/6 mice. **b.** Representative OPAL images indicating the presence of DAPI+, CD3+, CD8+, CD103+ cells (white dots) in the MFP of virgin, d10-FW and D28-inv C57BL/6 mice. Blue regions indicate local lymph node and yellow represent mammary fat pad tissue boundary. **c.** Total number of CD3+CD8+CD103+ T cells in the 4th MFP of virgin (n=7), d10-FW (n=4) and d28-inv (n=6) C57BL/6 mice measured by OPAL microscopy per mammary fat pad section. **d.**

Representative OPAL images indicate the single-colour staining of DAPI, E-cadherin (ECAD), CD3, CD8 and CD103 on T cells in the MFP of virgin, d10-FW and D28-inv C57BL/6 mice. **e.** Mean distance between ECAD⁺ cells and the closest CD3⁺ CD8⁺ CD103⁺ T cells of virgin (n=7), d10-FW (n=4) and d28-inv (n=6) C57BL/6 mice. Data in graphs represent mean ±SEM, results represent two combined independent experiments. Statistical significance determined by two sided Mann-Whitney test (a) or Kruskal-Wallis test (c, e). Exact p values are shown

Extended Data Figure 6. Immune cell infiltration in TNBC murine mammary tumours.

a.Numbers of indicated immune cell sub-populations per gram of AT3-OVA tumour from virgin (n=9) and d28-inv (n=10) C57BL/6 mice. **b.** Numbers of indicated immune cell subpopulations per gram of AT3-OVA tumour from virgin (n=8) and d10-FW (n=8) C57BL/6 mice. **c.** Numbers of indicated immune cell subpopulations per gram of D2A1 tumour from virgin (n=8) and d10-FW (n=8) BALB/c mice. **d.** Numbers of indicated immune cell subpopulations per gram of D2A1 tumour from virgin (n=6) and d28-inv (n=7) BALB/c mice. Data in graphs represent mean ±SEM, results represent two combined independent experiments. Statistical significance determined by two-sided Mann-Whitney test. Exact p values are shown.

Extended Data Figure 7. TNBC tumour growth and immune infiltration in murine models.

a.Tumour growth (left) and endpoint tumour volume (right) of AT3-OVA cells in the 4th MFP of RAG2^{-/-}γc^{-/-} mice pre-inoculated with naive OT-I cells seven days prior to mating in d10-FW (n=4) and age-matched virgin (n=4) control mice. **b.** Numbers of indicated immune cell populations in RAG2^{-/-}γc^{-/-} mice pre-inoculated with effector OT-I cells seven days prior to mating in d28-inv (n=10) and age-matched virgin (n=10) control mice. **c.** Numbers of indicated immune cell subpopulations per gram of AT3-OVA tumour from virgin (n=6) and d10-FW (n=6) RAG2^{-/-}γc^{-/-} mice at four weeks post tumour cell injection. **d.** Tumour growth (left) and endpoint

tumour burden (right) of AT3-OVA cells in the 4th MFP of RAG^{-/-}1^{-/-} mice. Mice were injected with 20x10⁶ effector gBT-I cells or PBS control eight weeks prior to injection of AT3-OVA cells (n=5 per group for tumour growth and 10 for endpoint weight). Data in graphs represent mean ±SEM. Results are representative of n=2 independent experiments (a, d left) or two combined independent experiments (b-d right). Statistical significance determined by two-sided Mann-Whitney test. Exact p values are shown.

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1214

1215

1216

1217

1218

1219

Extended Data Figure 8. T cell depletions and TIL differences in TNBC murine models a. Number of indicated immune cells per gram of AT3-OVA tumour from virgin mice treated with isotype control(n=16), anti-CD4 (n=12), anti-CD8α (n=9), anti-CD8β(n=12) or anti-CD4/CD8a (n=14). **b.**Number of indicated immune cells per gram of AT3-OVA tumour from d28-inv mice treated with isotype control(n=16), anti-CD4(n=13), anti-CD8α(n=9), anti-CD8β (n=14) or combined anti-CD4/CD8α(n=14). **c.**AT3-OVA endpoint tumour weight in C57BL/6 mice in virgin (n=16) and d28-inv(n=16) isotype treated controls. d.Number of indicated immune cells per gram of AT3-OVA tumour from d28-inv virgin (n=16) and d28-inv (n=16) mice treated with isotype control. **e.**Representative UMAP of 20,000 CD45⁺ immune cells by flow cytometry from AT3-OVA tumours of C57BL/6 d28-inv isotype control and CD4 depleted mice with two enriched clusters (C1,C2) indicated and CD4⁺ T cells highlighted. Each dot represents an individual cell. f.UMAP plots of indicated CD45⁺ cells from AT3-OVA tumours in d28-inv treated with isotype, anti-CD4, anti-CD8α, anti-CD8β or anti-CD4/CD8α. g.Frequency of cluster 1 among all CD45⁺ cells in AT3-OVA tumours from d28-inv isotype (n=8) and CD4 depleted (n=7) C57BL/6 mice. h.Relative expression of indicated markers in cluster 1 relative to all CD45⁺ cells from d28-inv isotype (n=8). i.Frequency of cluster 2 among all CD45⁺ in AT3-OVA tumours from d28-inv isotype (n=8) and CD4 depleted(n=7) C57BL/6 mice. j.Relative expression of indicated markers in cluster 2 relative to all CD45⁺ from d28-inv isotype control mice(n=8). k. Number of indicated immune cells per gram of AT3-OVA tumour from d28-inv mice treated with isotype (n=16) or anti-CD4(n=13). I.Representative images of AT3-OVA tumours stained with Masaon's trichrome. Arrows indicate positive green staining of collagen in virgin (left) and d28-inv (right) tissue. **m.**Proportion of Masson's trichrome staining in AT3-OVA tumours from virgin(n=6) and d28-inv (n=5) C57BL/6 measured by Masson's trichrome staining. Two combined independent experiments (a-c,k-m) representative of two independent experiments (e-j). mean ±SEM, two-sided Mann-Whitney test. Exact p values are shown.

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1241

1242

1243

1244

1245

1246

Extended Data Figure 9. Parity, breastfeeding and TIL associations in human breast cancer subtypes

a. Breastfeeding cohort multivariate analysis with clinical prognostic factors shown (n=270). OS events were censored at 15 years follow up and adjusted for breastfeeding status (BF), age at diagnosis (Age.dx), years since last live birth to BC diagnosis (time since last birth), and treatment with chemotherapy (treatment chemo) (treatment mastectomy). Hazard ratios are presented with 95% confidence intervals, shown as squares and horizontal lines, respectively. **b.** PB-T_{RM} signature correlation with tumour infiltrating lymphocyte (TIL) counts in TNBC (Basal subtype, n=136) from the TCGA dataset. R value indicate Spearman's correlation coefficient (two-sided p value from correlation test). c. Enrichment of the PB-T_{RM} signature in the indicated BC subtypes from the Metabric dataset, Basal (n=329), HER2 (n=240), LumA (n=718) and LumB (n=488). Kruskal Wallis test, p-value shown is unadjusted, d. Kaplan-Meier survival analysis indicates disease-free survival and e. overall survival from (n = 329) primary basal-like/TNBCs with prognostic separation according to PB-T_{RM} signature from parous normal breast tissue. Log-rank, p-values and hazard ratios are shown. **f.** Intratumoural T cell density in HER2 and Luminal BC subtypes determined by immunohistochemistry for CD8+ and CD3+ in MyBrCa dataset, comparing nulliparous (N) and parous (P) women with differing breastfeeding histories prior to cancer diagnosis (bf: any recorded breastfeeding activity). CD8+ and CD3+T cell density quantified as ratio of stainpositive pixels to all pixels within tumour margins, represented as a percentage. Modelled with

beta regression adjusting for covariates of age at diagnosis and tumour grade. Unadjusted p values with the AME for each group compared to N are presented. Box plots: Horizontal bar shows median, hinges represent IQR, and whiskers extend to the most extreme dot point within 1.5xIQR, and points beyond show outliers. Individual points show data from each case, coloured according to the status shown on the x-axis. Exact p values are shown.

Extended Data Figure 10. Representative flow cytometry gating strategies

- **a.** Immunophenotyping of cancer-unaffected human normal breast tissue (**Main Fig. 1b**) Immunophenotyping of healthy C57BL/6 murine immune cell phenotyping of mammary tissue are shown from cells gated based on morphology (FSC-A, SSC-A) and singlets (FSC-H, FSC-
- 1278 A). (**Main Fig. 2**)

Acknowledgements

The authors would like to acknowledge the Peter MacCallum Cancer Centre Flow Cytometry Facility, Amanda Lee, Stuart Bencraig and Tim Semple from Molecular Genomics Core, Centre Animal Research Platform, Centre for Advanced Histology and Microscopy at the Peter MacCallum Cancer Centre. Australian genome research facility (AGRF, Melbourne, Australia) for their assistance with RNA sequencing. We thank Richard Young and David Byrne for the OPAL microscopy reagents and histology sectioning support. We also thank Chris Mintoff, Michael Neeson, Tania Tan, Valerie Setiono for assistance with human breast tissue processing. We also thank Melrine Pereira for providing D2A1 cells. We sincerely thank Kconfab team members Genna Glavich, Alexandra Smith, Lody Mokdsi and Eveline Niedermayr for their ongoing support. We thank Jeannette Parrodi for her administrative support.

This work was supported by the Mark Foundation ASPIRE II Award (APP ID: 5820526561), Australia, Cancer Council Victoria and the Department of Health, Victoria, Australia. S.Loi is

supported by the National Breast Cancer Foundation of Australia (NBCF) (APP ID: EC-17-001), the Breast Cancer Research Foundation, New York (BCRF (APP ID: BCRF-21-102) and a National Health and Medical Council of Australia (NHMRC), Investigator Grant (APP ID: 1162318), and the Peter MacCallum Cancer Centre Foundation. P.S. is supported by a National Health and Medical Council of Australia (NHMRC) Investigator Grant (APP ID: 2017477) and the Peter MacCallum Cancer Centre Foundation. B.V. is supported by a Postdoctoral Research Fellowship from Cancer Council Victoria and the Department of Health, Victoria, Australia. P.K.D is supported by a National Health and Medical Research Council Principal Research Fellowship (APP ID: 1136680). L.K.M. is a Senior Medical Research Fellow supported by the Sylvia and Charles Viertel Charitable Foundation.

Author Contributions

B.V, F.C, P.S, M.A.H, performed primary human and murine experiments, analysed results, coordinated the project, and wrote the research manuscript. F.C, P.S, J.W and J.P generated programming scripts and analysed the bioinformatics results. E.B and D.C, performed murine experiments, dosing, tumour cell injections, associated procedures and maintenance of murine models. M.R.O, C.G, M.H, T.N.B and S.S supported with interpretation of results and performed experiments. J.K, J.B.D, L.G, K.C, S.T, H.Y, R.I, M.J, supported with experiments. kConFab Investigators contributed to the recruitment of participants and coordinated biospecimen acquisition, clinical data curation and governance. H.T. from KConFab contributed to recruitment of participants, biospecimen acquisition, clinical data curation. R.S, H.T, C.P, S.N, T.H, T.S., J.V, P.J.N, P.K.D and LKM provided scientific expertise. All authors approved the final research manuscript. S.L. as lead senior author conceived, led and coordinated the project, and provided the project funding.

Conflict of Interest

1322	P.S has acted as a consultant (not compensated) to Roche-Genentech and received research			
1323	funding to his institution from Roche-Genentech.			
1324	S.Loi receives research funding to her institution from Novartis, Bristol Meyers Squibb, Merck,			
1325	Puma Biotechnology, Eli Lilly, Nektar Therapeutics, Astra Zeneca, Roche-Genentech and			
1326	Seattle Genetics. S.Loi has acted as consultant to Seattle Genetics, Novartis, Bristol Meyers			
1327	Squibb, Merck, AstraZeneca, Eli Lilly, Roche-Genentech, Aduro Biotech, GlaxoSmithKline,			
1328	Silverback Therapeutics, G1 Therapeutics, PUMA Biotechnologies, Pfizer, Gilead			
1329	Therapeutics, Daiichi Sankyo, Amuni and Tallac Therapeutics. PKD receives research funding			
1330	from Myeloid Therapeutics, Prescient Therapeutics and Bristol-Myers Squibb.			
1331				
1332				
1333	Additional Information			
1334	Supplementary Information is available for this paper.			
1335	Correspondence and requests for materials should be addressed to Professor Sherene Loi –			
1336	sherene.loi@petermac.org			
1337	Reprints and permissions information is available at www.nature.com/reprints.			

List of the kConFab consortium authors' and affiliations

1340 1341

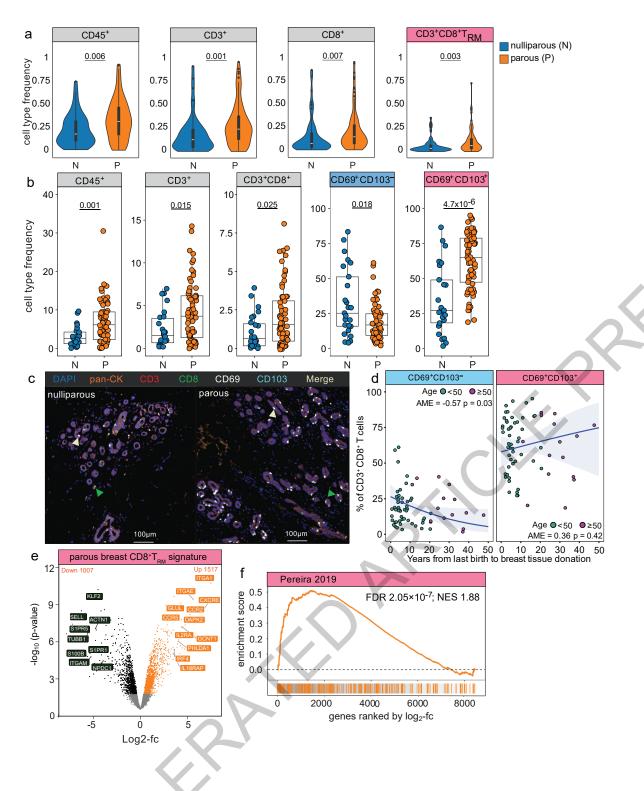
1339

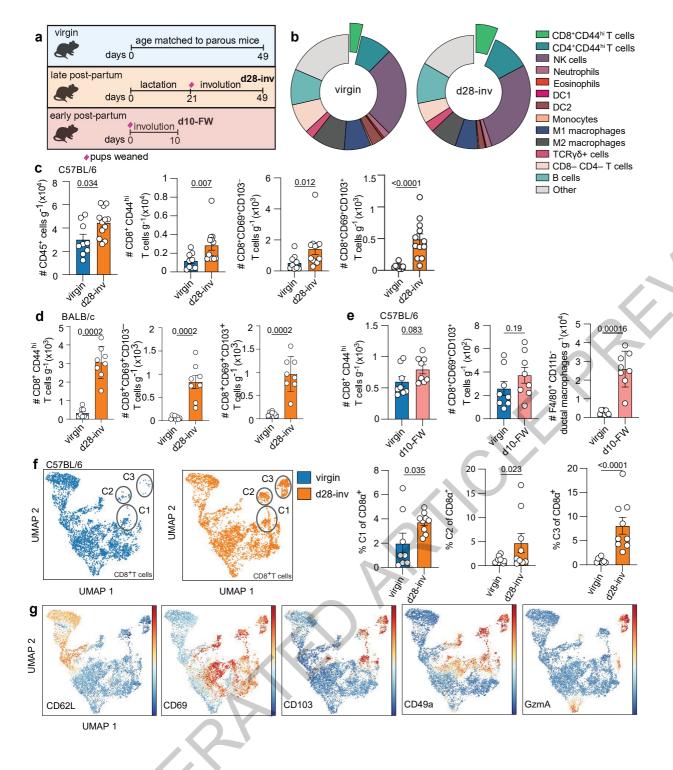
kConFab investigators and consortium members

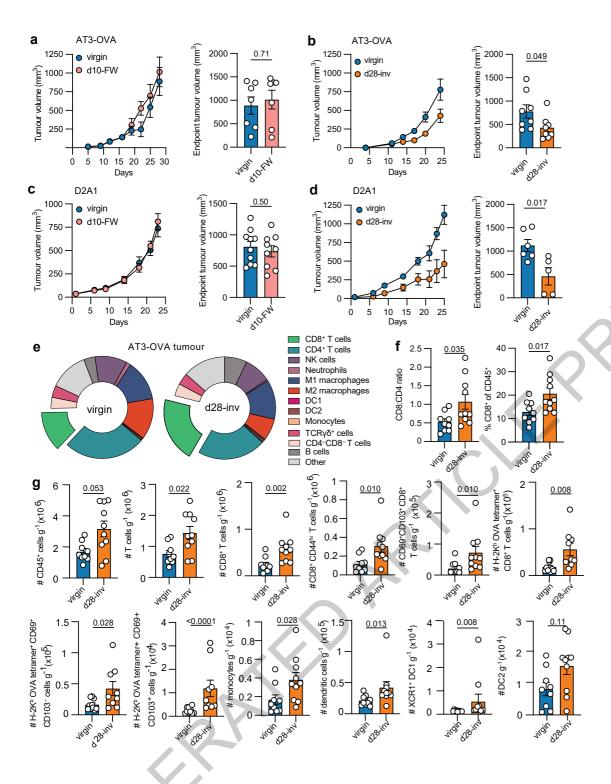
- David Amor^10, Lesley Andrews^11, Yoland Antill^1, Rosemary Balleine^12, Jonathan
- Beesley^13, Ian Bennett^14, Michael Bogwitz^15, Simon Bodek^16, Leon Botes^11,
- Meagan Brennan^17, Melissa Brown^18, Michael Buckley^19, Jo Burke^20, Phyllis
- Butow^21, Liz Caldon^22, Ian Campbell^1, Michelle Cao^23, Anannya Chakrabarti^24,
- Deepa Chauhan^25, Manisha Chauhan^26, Georgia Chenevix-Trench^13, Alice
- 1347 Christian^27, Paul Cohen^28, Alison Colley^29, Ashley Crook^30, James Cui^31, Eliza
- 1348 Courtney^30, Margaret Cummings^32, Sarah-Jane Dawson^1, Anna deFazio^12, Martin
- Delatycki¹16, Rebecca Dickson³0, Joanne Dixon²7, Stacey Edwards¹8, Gelareh
- Farshid^33, Andrew Fellows^1, Georgina Fenton^34, Michael Field^30, James
- Flanagan^35, Peter Fong^36, Laura Forrest^15, Stephen Fox^1, Juliet French^18, Michael
- Friedlander^11, Clara Gaff^15, Mike Gattas^37, Peter George^38, Sian Greening^39,
- Marion Harris¹, Stewart Hart⁴0, Philip Harraka³1, Nick Hayward¹3, John Hopper⁴1,
- Cass Hoskins¹⁵, Clare Hunt⁴⁰, Paul James⁴², Mark Jenkins⁴¹, Alexa Kidd²⁷, Judy
- 1355 Kirk^12, Jessica Koehler^11, James Kollias^33, Sunil Lakhani^37, Mitchell Lawrence^31,
- Jason Lee^13, Shuai Li^41, Geoff Lindeman^8, Jocelyn Lippey^43, Lara Lipton^44, Liz
- Lobb^25, Sherene Loi^1, Graham Mann^12, Deborah Marsh^45, Sue-Anne McLachlan^46,
- Bettina Meiser^11, Roger Milne^47, Sophie Nightingale^6, Shona O'Connell^40, Sarah
- O'Sullivan^28, David Gallego-Ortega^22, Nick Pachter^15, Jia-Min Pang^1, Gargi
- Pathak^28, Briony Patterson^23, Amy Pearn^48, Kelly Phillips^1, Ellen Pieper^15, Susan
- Ramus^45, Edwina Rickard^12, Abi Ragunathan^12, Bridget Robinson^49, Mona Saleh^11,
- Anita Skandarajah^1, Elizabeth Salisbury^11, Christobel Saunders^47, Jodi Saunus^18,
- Peter Savas^1, Rodney Scott^50, Clare Scott^8, Adrienne Sexton^15, Joanne Shaw^25,
- Andrew Shelling^36, Shweta Srinivasa^12, Peter Simpson^18, Melissa Southey^41,
- Amanda Spurdle¹³, Jessica Taylor¹⁵, Renea Taylor³¹, Heather Thorne¹, Alison
- 1366 Trainer^11, Kathy Tucker^11, Jane Visvader^8, Logan Walker^13, Rachael Williams^11,
- 1367 Ingrid Winship^15, Mary-Ann Young^22, Milita Zaheed^11

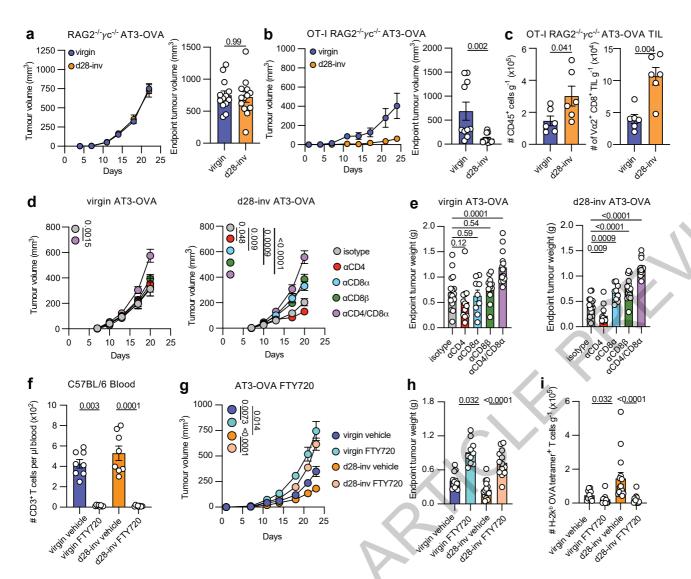
1368

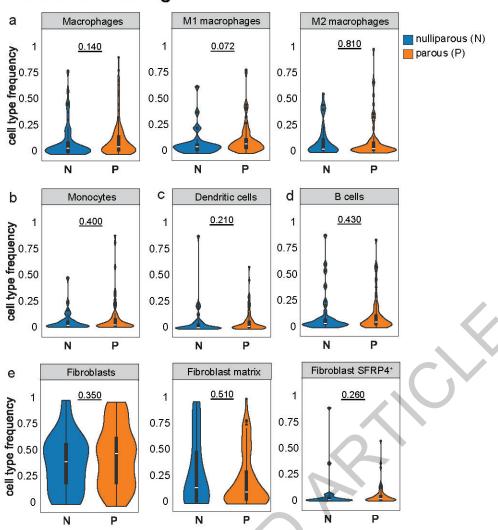
1369 1370

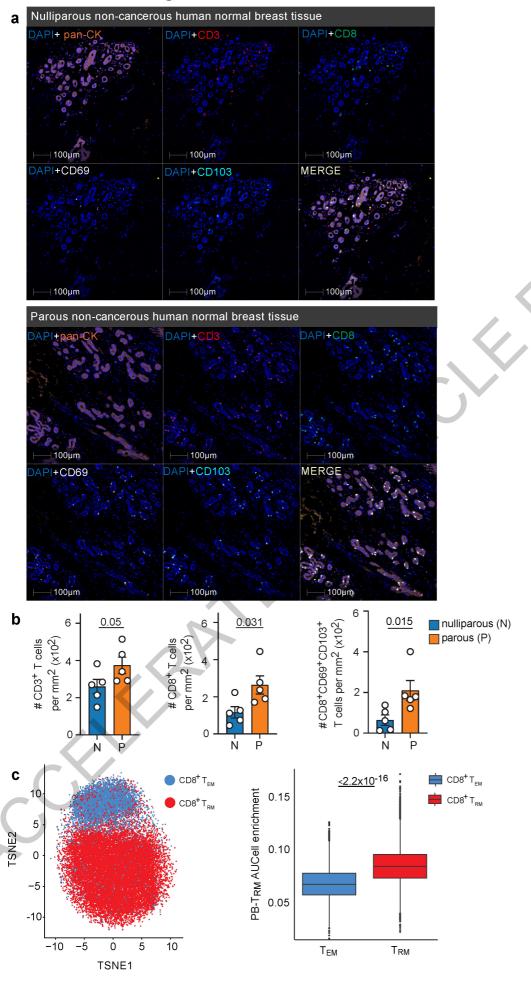

Affiliations for kConFab Investigators (continue from 1–9 title page)

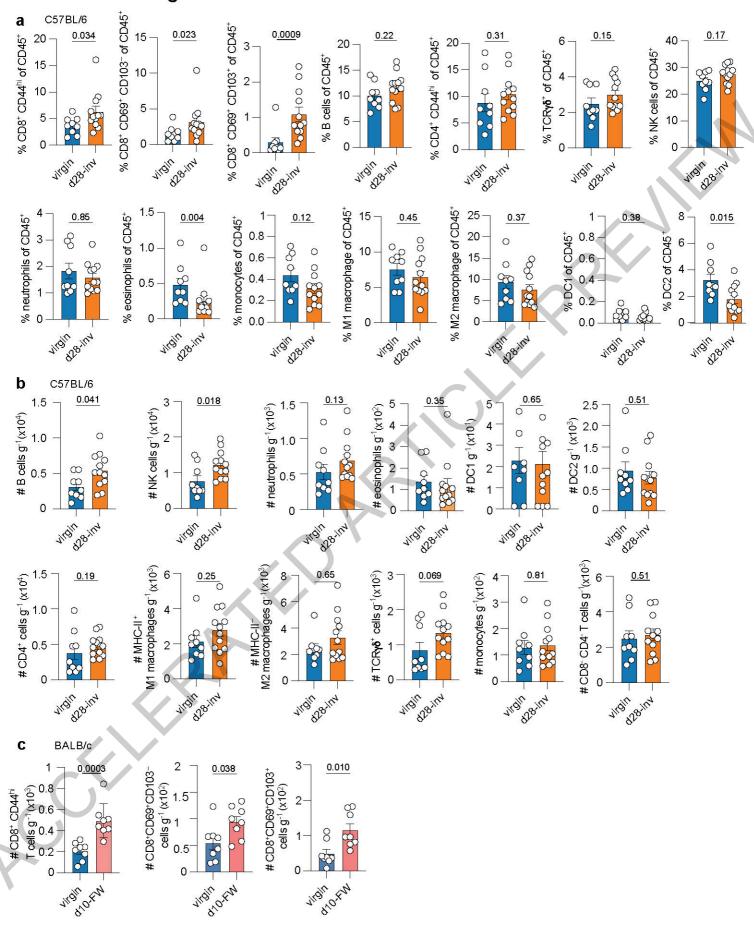

- 1371 ^10 Genetic Health Services Victoria, Royal Children's Hospital, Melbourne VIC 3050, Australia.
- 1374 ^12 Westmead Hospital and Westmead Institute for Cancer Research, Westmead NSW
- 1375 2145, Australia.
- 1376 ^13 QIMR Berghofer Medical Research Institute, Herston QLD 4006/4029, Australia.
- 1377 ^14 Silverton Place, 101 Wickham Terrace, Brisbane QLD 4000, Australia.
- 1378 ^15 Familial Cancer Centre and Genomic Medicine, The Royal Melbourne Hospital / VCCC,
- 1379 Parkville VIC 3050, Australia.
- 1380 ^16 Austin Health, Heidelberg/Melbourne VIC 3081, Australia.
- 1381 ^17 NSW Breast Cancer Institute, Westmead NSW 2145, Australia.
- 1382 ^18 The University of Queensland, St Lucia/Herston, QLD, Australia.
- 1383 ^19 Molecular and Cytogenetics Unit, Prince of Wales Hospital, Randwick NSW 2031,
- 1384 Australia.
- 1385 ^20 ICON Cancer Care, Hobart TAS 7000, Australia.
- 1386 ^21 Medical Psychology Unit, Royal Prince Alfred Hospital, Camperdown NSW 2050,
- 1387 Australia.
- 1389 2010, Australia.
- 1390 ^23 Tasmanian Clinical Genetics Service, Royal Hobart Hospital, Hobart TAS 7001,
- 1391 Australia.
- 1392 ^24 Specialist Breast Cancer Surgery, Richmond VIC 3121, Australia.

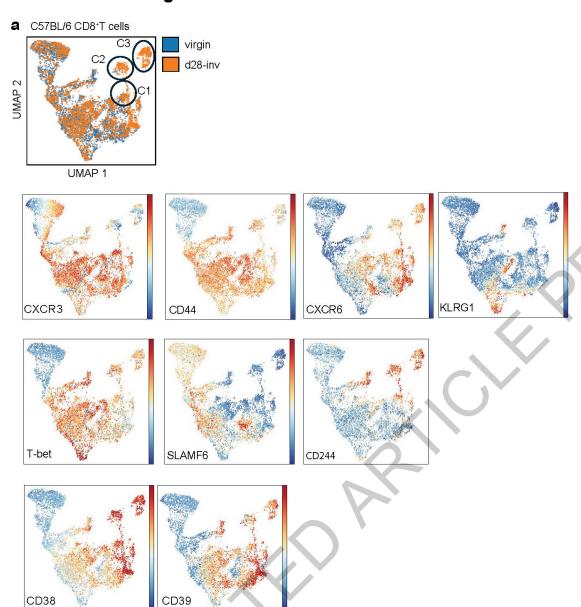

- 1393 ^25 School of Psychology, The University of Sydney, Camperdown NSW 2006, Australia.
- 1394 ^26 St Vincent's Hospital Cancer Genetics Clinic, The Kinghorn Cancer Centre, Sydney
- 1395 NSW, Australia.
- 1396 ^27 Central Regional Genetics Service, Wellington Hospital, Wellington, New Zealand.
- 1397 ^28 St John of God Subiaco Hospital / Genetic Services of Western Australia, Subiaco WA
- 1398 6008, Australia.
- 1399 ^29 Department of Clinical Genetics, Liverpool Hospital, Liverpool NSW 2170, Australia.
- 1400 ^30 Department of Clinical Genetics, Royal North Shore Hospital, St Leonards NSW 2065,
- 1401 Australia
- 1402 ^31 Monash University, Clayton VIC 3168/3800, Australia.
- 1403 ^32 Department of Pathology, University of Queensland Medical School, Herston QLD 4006,
- 1404 Australia
- 1405 ^33 SA Pathology / Royal Adelaide Hospital, Adelaide SA 5000, Australia.
- 1406 ^34 South West Family Cancer Clinic, Liverpool Hospital, NSW, Australia.
- 1407 ^35 Imperial College London, London W12 0NN, UK.
- 1408 ^36 Auckland City Hospital / University of Auckland, Auckland, New Zealand.
- 1409 ^37 Queensland Clinical Genetic Service / Royal Brisbane and Women's Hospital, Herston
- 1410 QLD 4029, Australia.
- 1411 ^38 Canterbury Health Laboratories, Christchurch, New Zealand.
- 1412 ^39 Illawarra Cancer Centre, Wollongong Hospital, Wollongong NSW 2521, Australia.
- 1413 ^40 Southern Health Familial Cancer Centre, Monash Medical Centre, Clayton VIC 3168,
- 1414 Australia.
- 1415 ^41 Centre for Epidemiology and Biostatistics / Melbourne School of Population and Global
- Health, The University of Melbourne, Carlton VIC 3053, Australia.
- 1417 ^42 Genetic Health Services (Monash Medical Centre), Clayton VIC, Australia.
- 1418 ^43 Department of Surgery, St Vincent's Hospital, Melbourne VIC, Australia.
- 1419 ^44 Medical Oncology and Clinical Haematology Unit, Western Health, Footscray VIC,
- 1420 Australia.

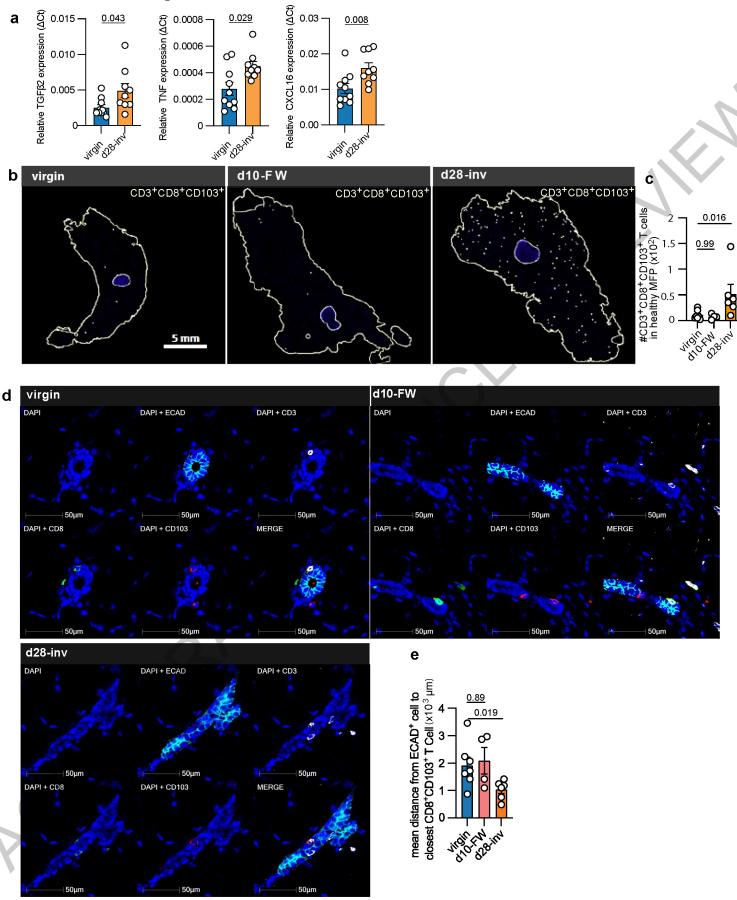

1429

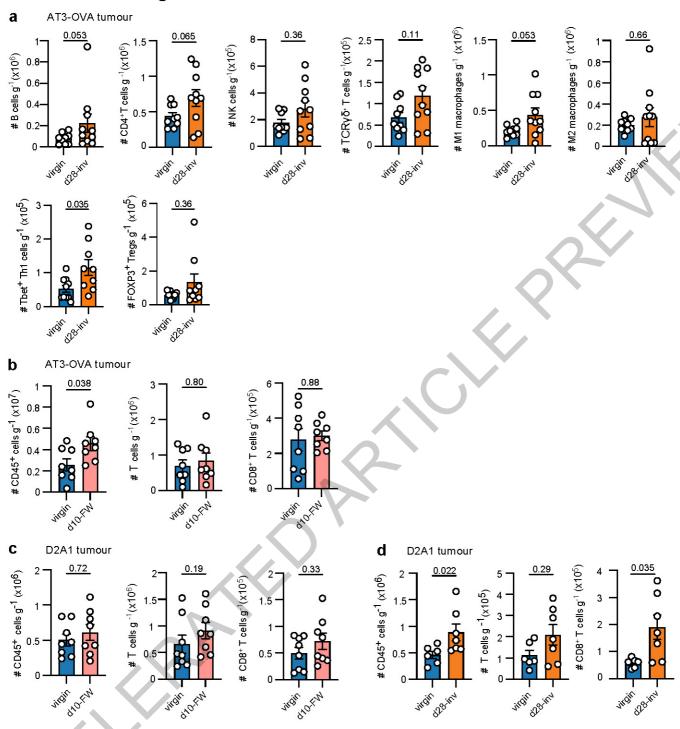

- 1422 Sydney, Kensington NSW, Australia.
- 1423 ^46 Department of Oncology, St Vincent's Hospital, Fitzroy VIC 3065, Australia.
- 1424 ^47 The Royal Melbourne Hospital / University of Western Australia / Department of
- 1425 Surgery, Parkville VIC / Perth WA, Australia.
- 1426 ^48 The Gene Council, North Perth WA 6906, Australia.
- 1427 ^49 Christchurch Hospital, Christchurch, New Zealand.
- 1428 ^50 Hunter Area Pathology Service, John Hunter Hospital, Newcastle NSW 2310, Australia.

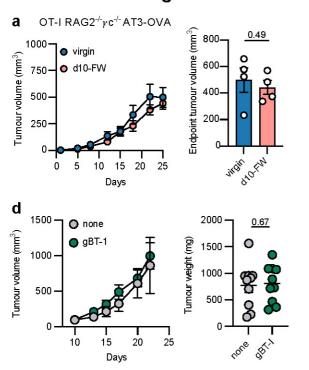


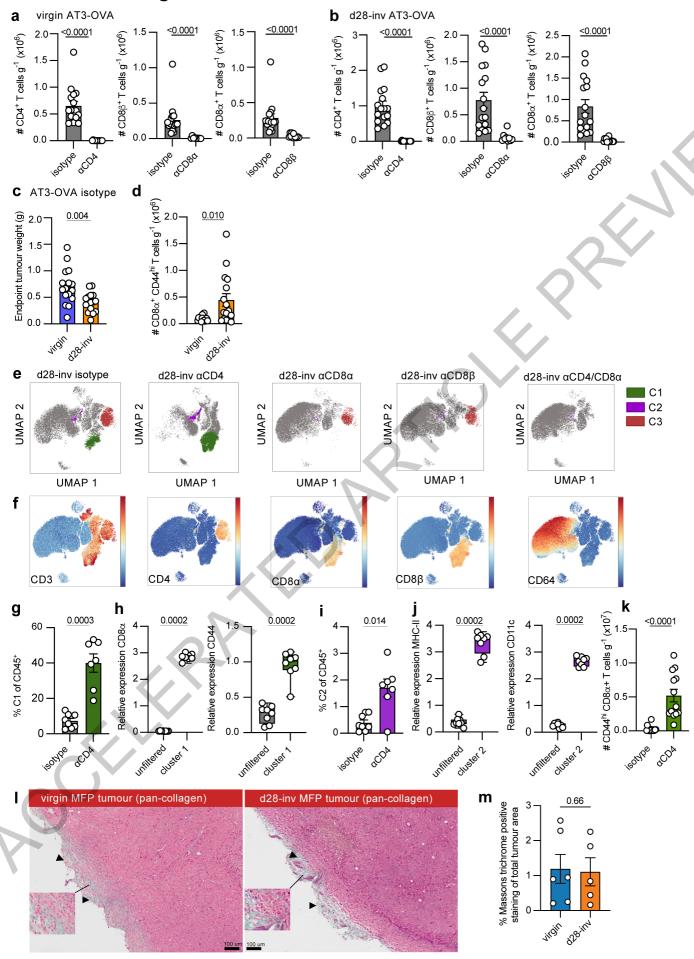




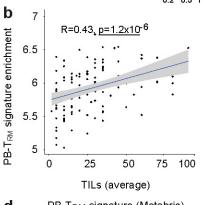


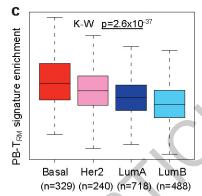


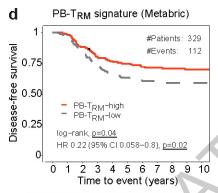


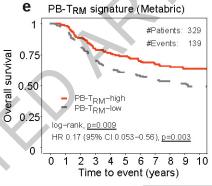

b

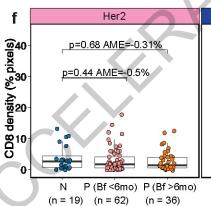
CD69+CD103+OT-I cells g⁻¹ MFP(x10³) # CD45+ cells g⁻¹(x10⁵) **O**

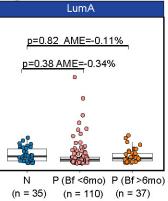

#CD8+TIL g⁻¹(x10⁵)

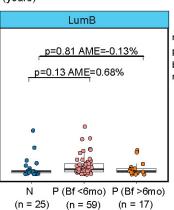

Storen.

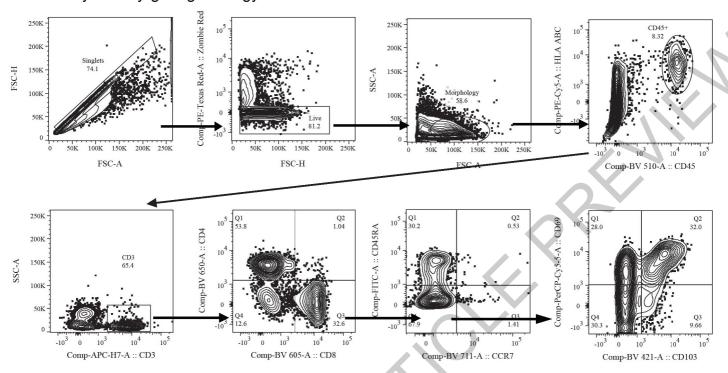

0.003

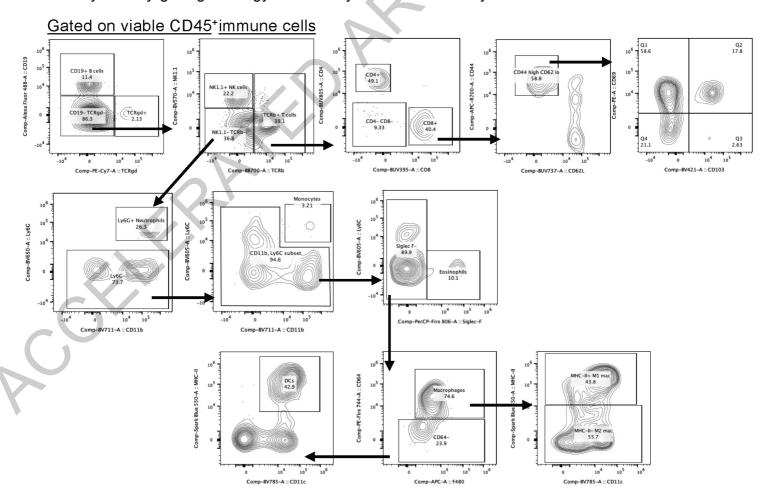



ı	Variable		N	Hazard ratio	Confidence intervals	p value
	breastfeeding	no	28	•	Reference	
		yes	242		0.39 (0.19, 0.79)	0.009
	age at diagnosis		270	-	1.04 (0.99, 1.09)	0.083
	time since last birth	≤10	122	•	Reference	
		>10	148	-	0.45 (0.19, 1.06)	0.066
	treatment chemo	no	80	•	Reference	
		yes	190	÷ -	1.47 (0.75, 2.87)	0.258
	treatment mastectomy	no	66	•	Reference	
		yes	204	-	0.53 (0.29, 0.98)	0.042
				02 05 1 2		









nulliparous (N) parous (P) breastfeeding (Bf) months (mo)

a Flow cytometry gating strategy for non-cancerous human normal breast tissue

b Flow cytometry gating strategy for healthy murine mammary tissue

Corresponding author(s):

Prof. Sherene Loi and Prof. Laura K Mackay

Last updated by author(s):___

17-09-**2025**

Reporting Summary

nature portfolio

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our <u>Editorial Policies</u> and the <u>Editorial Policy Checklist</u>.

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

		+.	\sim \pm	
			\sim 1	11
_	ıч	u	st	-

n/a	Confirmed	
	imes The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement	
	A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeat	edly
	The statistical test(s) used AND whether they are one- or two-sided Only common tests should be described solely by name; describe more complex techniques in the Methods section.	
	A description of all covariates tested	
	A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons	
	A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)	coefficient)
	For null hypothesis testing, the test statistic (e.g. F , t , r) with confidence intervals, effect sizes, degrees of freedom and P value Give P values as exact values whenever suitable.	noted
\boxtimes	For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings	
\boxtimes	For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes	
	$\textstyle extstyle extstyle $	
	Our web collection on statistics for biologists contains articles on many of the points above.	

Software and code

Policy information about availability of computer code

Data collection

Flow cytometry, FlowJo v10 (FlowJo LLC). R analyses, ggeffects (v2.2.1), betareg (v3.2-1), AUCell (v1.28.0) AME margin (v0.3.28),RUV-III (v0.9.7.1),limma (v3.60.3),fgsea (v1.30.0),Harmony (v1.2.3),Seurat (v5.2.1),confint' (v1.11.0), dplyr 1.1.2, tidyr 1.3.0, readxl 1.4.3, readr 2.1.4 and magrittr 2.0.3.Sequencing, HTSeq (v2.0.3), Microscopy,HALO v3.6.4134 and HighPlex FL v4.2.3.

Data analysis

FlowJo version 10 (FlowJo LLC), DE gene analysis performed using R limma (v3.60.3). Volcano plots with ggplot2 (v3.5.1). Statistical analysis and data presentation: Graphpad Prism 9, GSEA analysis derived from GSE112825 Santucci et al 2019. statistical analyses for human cohort were conducted using Rv4 and murine cohort data analyses using Graphpad Prism v9, General: Microsoft Excel 2010

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Processed and raw RNA Sequencing counts for human PB-TRM signature can be accessed via publicly available GEO: GSE271307 and Data availability statement has been provided in the manuscript including accession codes.

Research involving human participants, their data, or biological material

Policy information about studies	with <u>human participants or human data</u> . See also policy information about <u>sex, gender (identity/presentation),</u>
and sexual orientation and race, or	ethnicity and racism.
Reporting on sev and gender	["Parity and lactation induce T cell mediated breast cancer protection" only apply to women.

also including European, Hispanic , Asian, African American populations.

Reporting on race, ethnicity, or

Reporting on sex and gender

other socially relevant groupings

Population characteristics

Demographic (patients de-identified) information were provided in SI table guide from Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer (kConFab), Australia.

Recruitment

For Breast FACS and TILs/breastfeeding analyses, patients were approached by a prospective biobanking effort prior to commencement of this study. No significant biases are expected. Human MyBrCa cohort was a large study designed to recruit broadly. Again no important biases expected.

Malaysian and Australian (European ancestry predominantly) cohorts (Figure 5) Reed et al. collated datasets in Figure 1a

Ethics oversight

Complete ethics information and approval numbers for human and murine studies are provided in the manuscript methods section.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.					
☐ Behavioural & social sciences ☐ Ecological, evolutionary & environmental sciences					
For a reference copy of the document with all sections, see <u>nature.com/documents/nr-reporting-summary-flat.pdf</u>					

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size

In an exploratory study of this nature it is not possible to pre-specify the sample size. Cases were acquired, data analyzed and demographic and information surrounding epidemiology were gathered retrospectively at the final endpoint post collation of full comprehensive analysis. The final sample size was determined in an adaptive fashion based on equal representation.

Data exclusions

MyBrCa clinical cohort, 3 cases without PAM50, 20 cases contained "normal-like" classification were excluded from the analysis. Parity was defined as at least one live birth, and pregnancy-associated cancers were not excluded in this analysis.

Replication

All characterisations of breast immune infiltration were replicated in 90 patient cohort as described in respective methods sections and Bulk RNASeq was performed on T cells isolated from multiple cases and matched peripheral blood contrasts were used for comparison. Mammary infiltrating lymphocytes in murine models shown by flow cytometry, immunohistochemistry, tumour models were replicated at least twice, shown from either pooled repeats or representative of $\,$ independent repeats with similar results indicated in figure legends

Randomization

Therapeutic interventions in murine studies begun prior tumour cell inoculation and continued following BC onset randomization is not

Blinding

Investigators performed prospective collections for human and murine cohorts, retrosective analyses were performed from published datasets Data was not blinded.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems		Methods		
n/a	Involved in the study	n/a	Involved in the study	
	Antibodies	\boxtimes	ChIP-seq	
	Eukaryotic cell lines			
\boxtimes	Palaeontology and archaeology	\boxtimes	MRI-based neuroimaging	
	Animals and other organisms			
\boxtimes	Clinical data			
\boxtimes	Dual use research of concern			
\boxtimes	Plants			

Antibodies

Antibodies used

Human antibodies:	Murine antib	odies		
Marker; Flurophore; Catalogue#, Supplier	Marker	Fluorphore	Catalogue #	Supplier
CD45 BV510 Human 304036 B2411217 H130 Biolegend	CD49a	BUV395	740262	BD
CD45 FITC Human 555482 4248832 H130 BD Biosciences	NK1.1	BUV563	741233	BD
CD3 APC-H7 Human 560176 7234624 SK7 BD Biosciences	CD8b	BUV661	741585	BD
CD8 BV605 Human 301040 B230656 RPA-T8 Biolegend	CD8a	RB545	569278	BD
CD8 PE Human 555635 6095935 HIT8a BD Biosciences	CD4	BUV805	741913	BD
CD4 BV650 Human 317436 B2300991 OKT4 Biolegend	Ly108	BV421	740090	BD
<u> </u>	CD103	BV480	566118	BD
CD197,CCR7 BV711 Human 353228 B223097 G043H7 Biolegend	CD44	BV510	563114	BD
CD45RA FITC Human 555488 5181589 HI100 BD Biosciences CD69	Ly6C	BV570	128030	Biologend
PerCP-Cy5.5 Human 310926 B234158 FN50 Biolegend HLA ABC PE-	KLRG1 CXCR3	BV605 BV650	564013 126531	Biolegend Biolegend
Cy5 Human 555554 5163888 G46-2.6 BD	CD39	BV711	567295	BD
CD69 PECY7 Human 310912 B210943 FN50 Biolegend	PD-1	BV750	135263	Biolegend
CD103 BV421 Human 350214 B238177 BerACT8 Biolegend pan-	CD244	BV785	740860	BD
cytokeratin (AE1/AE3); Human ;M3515; DAKO	TCRgd	BB700	745818	BD
CD3e;(SP7); Human; Ab16669;Abcam	CXCR6	PE-Dazzle54	151117	Biolegend
CD8;(4B11); Human; NCL-L-CD8-4B11;Leica Biosystems CD69;				_
(EPR21814);Human;Ab233396; Abcam	CD69	PE-Cy5	15-0691-82	Invitrogen
, , , , , , , , , , , , , , , , , , , ,	CD45.2	SparkNIR685	109864	Biolegend
CD103;(EPR416602);Human;Ab129202; Abcam	CD62L	APC-R700	565159	BD
	TCRb	APC-Cy7	109220	Biolegend
Murine antibodies	CD38	APC-Fire810	102746	Biolegend
CD45 APCCY7;Mouse; 109824;Biolegend	Granzyme A TCF1	ef450 AF488	3029841 644S	Invitrogen CST
TCR-β BB700 Mouse; 745846 BD Biosciences	Granzyme B	APC	MHGB05	Invitrogen
TCR-β BV786 Mouse 742484 Biosciences	Thet	PE/Fire 810	644839	Biolegend
TCR-Vα2 PerCP Cy5.5 Mouse 560529 BD Pharmagen	CD45	PerCP	103130	Biolegend
CD8 BV711 Mouse 100748 Biolegend	CD19	AF488	115521	Biolegend
CD8 BUV395 Mouse 563786 BD Pharmagen	TCRgd	PE-Cy7	118123	Biolegend
CD4 BUV805 Mouse 741912 BD Pharmagen	NK1.1	BV570	108733	Biolegend
CD44 BV605 Mouse 103047 Biolegend	CD3	SparkNIR685	100262	Biolegend
8	CD44	APCR700	565480	BD
CD62L PECY7 Mouse 104418 Biolegend	CD62L	BUV737	612833	BD
CD62L BUV737 Mouse 612833 Pharmagen	CD103	BV421	121422	Biolegend
CD69 BUV395 Mouse 38290563760 BD Pharmagen	CD49a	BUV563	741306	BD
CD69 PE Mouse 12069183 Invitrogen	CD39	PE-Dazzle 594		Biolegend
CD103 FITC Mouse 121420 Biolegend	CD11b	BV711	209715	Biolegend
CD103 PE Mouse 12103182 Invitrogen	CD11c F480	BV785 APC	117335 123115	Biolegend Biolegend
CD11B BV711 Mouse 101242 Biolegend	Ly6G	BV650	123115	Biolegend
CD11C BV786 Mouse 117335 Biolegend	Ly6C	BV605	128036	Biolegend
F4/80 EF-450 Mouse 48480182 Invitrogen	MHC-II	SparkBlue550		Biolegend
MHC-II (I-A/I-E) APC Mouse 17532182 Invitrogen	CD170	PerCP-Fire 806		Biolegend
CD1d tetramer biotinylated PBS-57 66233 NIH	XCR1	Spark UV387		Biolegend
,	SIRPa	APC-Fire750		Biolegend
Streptavidin PE Mouse 12-4317-87 eBioscience	CX3CR1	Spark Blue 57		Biolegend
Streptavidin PE Mouse 554061 BD Pharmagen	CD64	PE-Fire 744	161010	BD
BioxCell murine depletion antibodies; Isotype control rat IgG2b	PD1	RY586	753854	BD
catalogue #BE0090;Anti-CD4 clone GK1.5, catalogue #	FOXP3	e450	48-5773-82	Thermofisher
BE0003-1;Anti-CD8a clone YTS 169.4, catalogue # BE0117; Anti-				
CD8b clone 53-5.8, catalogue # BE0223.				

Validation

All antibodies were validated by the supplier and validation statements are available in the manufacturer's website. Additionally, functional experiments were reported in extended figures for murine T cell depletion antibodies provided in the manuscript.

Eukaryotic cell lines

Policy information about <u>cell lines and Sex and Gender in Research</u>

Cell line source(s)

AT3-OVA and D2A1 cell lines sourced from Prof. Phil Darcy and A/Prof Kara Britt respectively from Peter MacCallum Cancer

Centre laboratory stocks, Melbourne, Australia

Authentication Both cell lines were well established and published.

Mycoplasma contamination Cell lines in this study were repetitively tested mycoplasma negative.

Commonly misidentified lines (See ICLAC register)

Cell lines in this study are not listed in the ILAC database.

Animals and other research organisms

Policy information about <u>studies involving animals</u>; <u>ARRIVE guidelines</u> recommended for reporting animal research, and <u>Sex and Gender in Research</u>

C57BL/6J wild type (wt) and BALB/c wt mice, RAG1-/-; RAG2-/-γc-/- and OT-I

CD45.2 and gBT-I CD45.1/CD45.2.Mice were used between 7-8 weeks of age.

Wild animals no wild animals were used in the study.

Reporting on sex female mice

Field-collected samples This study does not involve samples collected from the field

Ethics oversight

All animal experiments procedures conducted in this study were approved by the relevant Peter MacCallum Cancer Centre Animal Experimentation Ethics Committee or by The University of Melbourne Animal Ethics Committee and conducted in accordance with

Experimentation Ethics Committee or by The University of Melbourne Animal Ethics Committee and conducted in accordance with the National Health and Medical Research Council Australian Code of Practice for the Care and Use of Animals for Scientific Purposes.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Laboratory animals

Policy information about <u>clinical studies</u>

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration

We utilised immune scores and associated clinical information from the MyBrCa dataset obtained from the original publication that contain BC subtype, parity information and breastfeeding data were described Pan et al 2024. This was not a clinical trial

Study protocol

Clinical data previously reported in Pan *et al* 2024

Data collection

Extended MyBrCa demo table were provided in the supplemental table information in the current study and were previously described in Pan *et al* 2024.

Outcomes

Clinical data reported in Pan et al 2024. In this study we utilized report significantly higher tumoural immune content in "basal-like" TNBC in parous women overall, compared with the Nulliparous women who subsequently developed breast cancer and our parous (PB)-TRM gene signature was highly enriched with both parity and breastfeeding status, highlighting the specificity of the P-TRM signature to breast involution by parity, and the specific influence of lactation.

_				
D	ı	n	۱+	d

Seed stocks	not applicable
Novel plant genotypes	not applicable
Authentication	not applicable

Flow Cytometry

Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

X A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Human breast and Murine tissue samples were dissociated into single cell suspension was created using a modified published protocol Savas et al 2018. Adipose content were removed briefly from the mammary glands and the connective tissues were then finely diced into smaller fragments in RPMI1640 containing, 1 mg/ml collagenase type 4 and incubated for 30 minutes at 37C. Digested tissue fragments were teased through a 70um sieve, the sieve irrigated with neat PBS prior downstream analyses (Please refer further to respective tissue processing methods and resources table)

Instrument

BD Symphony A5 or LSR Fortessa X-20 (BD Biosciences, San Diego, CA, USA); 5-laser Cytek Aurora (Cytek Biosciences)

Software

FlowJo Version 10; OMIQ were used for FACS data interpretation and data presentation

Cell population abundance

Bulk RNA Seq, a total of 5x10e3 and blood 1x10e4 T cell fractions were FACS purified. Reanalysis of isolated CD8+ T cell following FACS were assessed for >90% purity of individual samples. total immune counts per gram were presented.

Gating strategy

Gating strategies including preliminary FSC/SSC gates of the starting population were provided in Extended Data Figure 11 legends

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Corresponding author(s):

Prof. Sherene Loi and Prof. Laura K Mackay

Last updated by author(s):___

17-09-**2025**

Reporting Summary

nature portfolio

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our <u>Editorial Policies</u> and the <u>Editorial Policy Checklist</u>.

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

		+.	\sim \pm	
			\sim 1	11
_	ıч	u	st	-

n/a	Confirmed	
	imes The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement	
	A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeat	edly
	The statistical test(s) used AND whether they are one- or two-sided Only common tests should be described solely by name; describe more complex techniques in the Methods section.	
	A description of all covariates tested	
	A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons	
	A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)	coefficient)
	For null hypothesis testing, the test statistic (e.g. F , t , r) with confidence intervals, effect sizes, degrees of freedom and P value Give P values as exact values whenever suitable.	noted
\boxtimes	For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings	
\boxtimes	For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes	
	$\textstyle extstyle extstyle $	
	Our web collection on statistics for biologists contains articles on many of the points above.	

Software and code

Policy information about availability of computer code

Data collection

Flow cytometry, FlowJo v10 (FlowJo LLC). R analyses, ggeffects (v2.2.1), betareg (v3.2-1), AUCell (v1.28.0) AME margin (v0.3.28),RUV-III (v0.9.7.1),limma (v3.60.3),fgsea (v1.30.0),Harmony (v1.2.3),Seurat (v5.2.1),confint' (v1.11.0), dplyr 1.1.2, tidyr 1.3.0, readxl 1.4.3, readr 2.1.4 and magrittr 2.0.3.Sequencing, HTSeq (v2.0.3), Microscopy,HALO v3.6.4134 and HighPlex FL v4.2.3.

Data analysis

FlowJo version 10 (FlowJo LLC), DE gene analysis performed using R limma (v3.60.3). Volcano plots with ggplot2 (v3.5.1). Statistical analysis and data presentation: Graphpad Prism 9, GSEA analysis derived from GSE112825 Santucci et al 2019. statistical analyses for human cohort were conducted using Rv4 and murine cohort data analyses using Graphpad Prism v9, General: Microsoft Excel 2010

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Processed and raw RNA Sequencing counts for human PB-TRM signature can be accessed via publicly available GEO: GSE271307 and Data availability statement has been provided in the manuscript including accession codes.

Research involving human participants, their data, or biological material

Policy information about studies	with <u>human participants or human data</u> . See also policy information about <u>sex, gender (identity/presentation),</u>
and sexual orientation and race, or	ethnicity and racism.
Reporting on sev and gender	["Parity and lactation induce T cell mediated breast cancer protection" only apply to women.

also including European, Hispanic , Asian, African American populations.

Reporting on race, ethnicity, or

Reporting on sex and gender

other socially relevant groupings

Population characteristics

Demographic (patients de-identified) information were provided in SI table guide from Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer (kConFab), Australia.

Recruitment

For Breast FACS and TILs/breastfeeding analyses, patients were approached by a prospective biobanking effort prior to commencement of this study. No significant biases are expected. Human MyBrCa cohort was a large study designed to recruit broadly. Again no important biases expected.

Malaysian and Australian (European ancestry predominantly) cohorts (Figure 5) Reed et al. collated datasets in Figure 1a

Ethics oversight

Complete ethics information and approval numbers for human and murine studies are provided in the manuscript methods section.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
☐ Behavioural & social sciences ☐ Ecological, evolutionary & environmental sciences
For a reference copy of the document with all sections, see <u>nature.com/documents/nr-reporting-summary-flat.pdf</u>

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size

In an exploratory study of this nature it is not possible to pre-specify the sample size. Cases were acquired, data analyzed and demographic and information surrounding epidemiology were gathered retrospectively at the final endpoint post collation of full comprehensive analysis. The final sample size was determined in an adaptive fashion based on equal representation.

Data exclusions

MyBrCa clinical cohort, 3 cases without PAM50, 20 cases contained "normal-like" classification were excluded from the analysis. Parity was defined as at least one live birth, and pregnancy-associated cancers were not excluded in this analysis.

Replication

All characterisations of breast immune infiltration were replicated in 90 patient cohort as described in respective methods sections and Bulk RNASeq was performed on T cells isolated from multiple cases and matched peripheral blood contrasts were used for comparison. Mammary infiltrating lymphocytes in murine models shown by flow cytometry, immunohistochemistry, tumour models were replicated at least twice, shown from either pooled repeats or representative of $\,$ independent repeats with similar results indicated in figure legends

Randomization

Therapeutic interventions in murine studies begun prior tumour cell inoculation and continued following BC onset randomization is not

Blinding

Investigators performed prospective collections for human and murine cohorts, retrosective analyses were performed from published datasets Data was not blinded.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems		Methods		
n/a	Involved in the study	n/a	Involved in the study	
	Antibodies	\boxtimes	ChIP-seq	
	Eukaryotic cell lines		Flow cytometry	
\boxtimes	Palaeontology and archaeology	\boxtimes	MRI-based neuroimaging	
	Animals and other organisms			
\boxtimes	Clinical data			
\boxtimes	Dual use research of concern			
\boxtimes	Plants			

Antibodies

Antibodies used

Human antibodies:	Murino satih	odios		
Marker; Flurophore; Catalogue#, Supplier			Catalogue #	Supplier
CD45 BV510 Human 304036 B2411217 H130 Biolegend				BD
CD45 FITC Human 555482 4248832 H130 BD Biosciences	NK1.1	BUV563	741233	BD
	CD8b	BUV661	741585	BD
	CD8a	RB545	569278	BD
	CD4	BUV805	741913	BD
	Ly108	BV421	740090	BD
9	CD103	BV480	566118	BD
,	CD44	BV510	563114	BD
				Biolegend
PerCP-Cy5.5 Human 310926 B234158 FN50 Biolegend HLA ABC PE-				Biolegend
Cy5 Human 555554 5163888 G46-2.6 BD				Biolegend BD
CD69 PECY7 Human 310912 B210943 FN50 Biolegend				Biolegend
CD103 BV421 Human 350214 B238177 BerACT8 Biolegend pan-				BD
cytokeratin (AE1/AE3); Human ;M3515; DAKO		BB700	745818	BD
CD3e;(SP7); Human; Ab16669;Abcam	_			Biolegend
				-
				Invitrogen
, , , , , , , , , , , , , , , , , , , ,				Biolegend
CD103,(EL N71000Z),Hullian,Ab1Z3Z0Z, Abcalli				BD Biolegend
Muring antihadias				Biolegend
				Invitrogen
· · · · · · · · · · · · · · · · · · ·				CST
•	Granzyme B	APC	MHGB05	Invitrogen
•	Tbet	PE/Fire 810	644839	Biolegend
TCR-Vα2 PerCP Cy5.5 Mouse 560529 BD Pharmagen	CD45	PerCP	103130	Biolegend
CD8 BV711 Mouse 100748 Biolegend	CD19	AF488	115521	Biolegend
CD8 BUV395 Mouse 563786 BD Pharmagen	TCRgd	PE-Cy7	118123	Biolegend
CD4 BUV805 Mouse 741912 BD Pharmagen	NK1.1	BV570	108733	Biolegend
CD44 BV605 Mouse 103047 Biolegend				Biolegend
5				BD BD
				Biolegend
9				BD BD
g .				Biolegend
9	CD11b	BV711	209715	Biolegend
~	CD11c	BV785	117335	Biolegend
_	F480	APC	123115	Biolegend
9	Ly6G	BV650	127641	Biolegend
5	Ly6C	BV605	128036	Biolegend
	MHC-II			Biolegend
MHC-II (I-A/I-E) APC Mouse 17532182 Invitrogen				Biolegend
CD1d tetramer biotinylated PBS-57 66233 NIH				Biolegend
Streptavidin PE Mouse 12-4317-87 eBioscience				Biologend
Streptavidin PE Mouse 554061 BD Pharmagen				Biolegend BD
				BD BD
				Thermofisher
	TOAFS	C-30	70-3113-02	mermonsilei
becood 1,5110 Cood clotte 113 103.4, Catalogue # be0117, Allti-				
	CD45 BV510 Human 304036 B2411217 H130 Biolegend CD45 FITC Human 555482 4248832 H130 BD Biosciences CD3 APC-H7 Human 560176 7234624 SK7 BD Biosciences CD8 BV605 Human 301040 B230656 RPA-T8 Biolegend CD8 PE Human 555635 6095935 HIT8a BD Biosciences CD4 BV650 Human 317436 B2300991 OKT4 Biolegend CD197,CCR7 BV711 Human 353228 B223097 G043H7 Biolegend CD45RA FITC Human 555488 5181589 HI100 BD Biosciences CD69 PerC-Cy5.5 Human 310926 B234158 FN50 Biolegend HLA ABC PE- Cy5 Human 555554 5163888 G46-2.6 BD CD69 PECY7 Human 310912 B210943 FN50 Biolegend CD103 BV421 Human 350214 B238177 BerACT8 Biolegend pan- cytokeratin (AE1/AE3); Human; M3515; DAKO CD3e;(SP7); Human; Ab16669; Abcam CD8;(4B11); Human; NCL-L-CD8-4B11; Leica Biosystems CD69; (EPR21814); Human; Ab233396; Abcam CD103;(EPR416602); Human; Ab129202; Abcam Murine antibodies CD45 APCCY7; Mouse; 109824; Biolegend TCR-β B8700 Mouse; 745846 BD Biosciences TCR-β BV786 Mouse 742484 Biosciences TCR-Vα2 PerCP Cy5.5 Mouse 560529 BD Pharmagen CD8 BV711 Mouse 100748 Biolegend CD8 BV731 Mouse 103047 Biolegend CD8 BV735 Mouse 563786 BD Pharmagen CD4 BUV805 Mouse 103047 Biolegend CD62L PECY7 Mouse 104418 Biolegend CD62L BUV737 Mouse 612833 Pharmagen CD69 BUV395 Mouse 38290563760 BD Pharmagen CD69 BUV395 Mouse 38290563760 BD Pharmagen CD69 BUV395 Mouse 38290563760 BD Pharmagen CD103 FITC Mouse 121420 Biolegend CD103 FIT Mouse 121420 Biolegend CD116 BV786 Mouse 48480182 Invitrogen MHC-II (I-A/I-E) APC Mouse 17532182 Invitrogen CD11 BV711 Mouse 101242 Biolegend CD11 CHA/I-E) APC Mouse 17532182 Invitrogen CD14 tetramer biotinylated PBS-57 66233 NIH Streptavidin PE Mouse 12-4317-87 eBioscience	Marker; Flurophore; Catalogue#, Supplier CD45 BV510 Human 304036 B2411217 H130 Biolegend CD45 BV510 Human 555482 4248832 H130 BD Biosciences CD3 APC-H7 Human 555482 4248832 H130 BD Biosciences CD8 BV605 Human 301040 B230656 RPA-T8 Biolegend CD8 PE Human 555635 6095935 HIT8a BD Biosciences CD4 BV650 Human 317436 B2300991 OKT4 Biolegend CD197,CCR7 BV711 Human 353228 B223097 G043H7 Biolegend CD197,CCR7 BV711 Human 353228 B223097 G043H7 Biolegend CD44 CD45RA FITC Human 555488 5181589 HI100 BD Biosciences CD69 PerCP-Cy5.5 Human 310926 B234158 FN50 Biolegend HLA ABC PE-Cy5 Human 310926 B234158 FN50 Biolegend HLA ABC PE-Cy5 Human 310912 B210943 FN50 Biolegend CD103 BV421 Human 350214 B238177 BerACT8 Biolegend pan-cytokeratin (AE1/AE3); Human ;M3515; DAKO CD3e;(SP7); Human; Ab16669; Abcam CD8;(4B11); Human; Ab16669; Abcam CD8;(4B11); Human; NCL-L-CD8-4B11; Leica Biosystems CD69; (EPR21814); Human; Ab129202; Abcam CD103;(EPR416602); Human; Ab129202; Abcam CD103;(EPR416602); Human; Ab129202; Abcam CD45.2 CD103;(EPR416602); Human; Ab129202; Abcam CD621 TCR-β B8700 Mouse; 109824; Biolegend TCR-β B8708 Mouse; 745846 BD Biosciences TCR-Vα2 PerCP Cy5.5 Mouse 560529 BD Pharmagen CD8 BUV395 Mouse 563786 BD Pharmagen CD45 BUV395 Mouse 103047 Biolegend CD68 UV395 Mouse 103047 Biolegend CD61 BUV395 Mouse 612833 Pharmagen CD44 BV605 Mouse 12069183 Invitrogen CD69 BUV395 Mouse 38290563760 BD Pharmagen CD69 BUV395 Mouse 12103182 Invitrogen CD69 BUV395 Mouse 12103182 Invitrogen CD103 FTC Mouse 121420 Biolegend CD61 BUV737 Mouse 117335 Biolegend CD103 FPC Mouse 12103182 Invitrogen CD118 BV711 Mouse 101242 Biolegend CD110 FPC Mouse 124317-87 eBioscience SCR1 FA80 CD110 FPC Mouse 124317-87 eBioscience SCR2 SCR3 SCR1 SCR2 SCR3 SCR3 SCR1 SCR3 SCR3 SCR3 SCR3 SCR3 SCR3 SCR3 SCR3	CD45 BV510 Human 304036 B2411217 H130 Biolegend CD493 BUV395 CD45 FITC Human 555482 4248832 H130 BD Biosciences NK1.1 BUV563 CD3 APC-H7 Human 560176 7234624 SXF DB Biosciences CD8 BUV661 CD8 BV605 Human 301040 B230656 RPA-T8 Biolegend CD8 BUV805 CD8 BV650 Human 317436 B2300991 OXT4 Biolegend CD103 BV480 CD197,CCR7 BV711 Human 353228 B223097 G043H7 Biolegend CD103 BV480 CD4 SK5 HUMAN 317436 B2300991 OXT4 Biolegend CD4 BV50 CD4 SK5 Human 310926 B234158 FN50 Biolegend HLA ABC PE-EV-Cy5.5 Human 310926 B234158 FN50 Biolegend HLA ABC PE-EV-Cy5.5 Human 310912 B210943 FN50 Biolegend CD4 BV50 CD69 PECY7 Human 310912 B210943 FN50 Biolegend CD39 BV711 CD103 BV421 Human 350214 B238177 BerACT8 Biolegend pancytokeratin (AE1/AE3); Human ;M3515; DAKO CD244 BV785 CD8;(SP7); Human; Ab16669/Abcam CXCR6 PE-Dazzle54 CD8,(4811); Human; Ab233396; Abcam CD62, APC-Cy7 CD62, APC-Cy7 Murine antibodies CD38 CD62, APC-Cy7 CD38 APC-Cy7 CR-β B8700 Mouse; 745846 BD Biosciences Granzyme A CP62, APC-Cy7 APC-Cy7 CR-β B8701 Mouse 742484 Biosciences Toet PE/Fire 810 CP45 PE/Fire 810	Marker; Flurophore; Catalogue#, Supplier

Validation

All antibodies were validated by the supplier and validation statements are available in the manufacturer's website. Additionally, functional experiments were reported in extended figures for murine T cell depletion antibodies provided in the manuscript.

Eukaryotic cell lines

Policy information about <u>cell lines and Sex and Gender in Research</u>

Cell line source(s)

AT3-OVA and D2A1 cell lines sourced from Prof. Phil Darcy and A/Prof Kara Britt respectively from Peter MacCallum Cancer

Centre laboratory stocks, Melbourne, Australia

Authentication Both cell lines were well established and published.

Mycoplasma contamination Cell lines in this study were repetitively tested mycoplasma negative.

Commonly misidentified lines (See ICLAC register)

Cell lines in this study are not listed in the ILAC database.

Animals and other research organisms

Policy information about <u>studies involving animals</u>; <u>ARRIVE guidelines</u> recommended for reporting animal research, and <u>Sex and Gender in Research</u>

C57BL/6J wild type (wt) and BALB/c wt mice, RAG1-/-; RAG2-/-γc-/- and OT-I

CD45.2 and gBT-I CD45.1/CD45.2.Mice were used between 7-8 weeks of age.

Wild animals no wild animals were used in the study.

Reporting on sex female mice

Field-collected samples This study does not involve samples collected from the field

Ethics oversight

All animal experiments procedures conducted in this study were approved by the relevant Peter MacCallum Cancer Centre Animal Experimentation Ethics Committee or by The University of Melbourne Animal Ethics Committee and conducted in accordance with

Experimentation Ethics Committee or by The University of Melbourne Animal Ethics Committee and conducted in accordance with the National Health and Medical Research Council Australian Code of Practice for the Care and Use of Animals for Scientific Purposes.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Laboratory animals

Policy information about <u>clinical studies</u>

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration

We utilised immune scores and associated clinical information from the MyBrCa dataset obtained from the original publication that contain BC subtype, parity information and breastfeeding data were described Pan et al 2024. This was not a clinical trial

Study protocol

Clinical data previously reported in Pan *et al* 2024

Data collection

Extended MyBrCa demo table were provided in the supplemental table information in the current study and were previously described in Pan *et al* 2024.

Outcomes

Clinical data reported in Pan et al 2024. In this study we utilized report significantly higher tumoural immune content in "basal-like" TNBC in parous women overall, compared with the Nulliparous women who subsequently developed breast cancer and our parous (PB)-TRM gene signature was highly enriched with both parity and breastfeeding status, highlighting the specificity of the P-TRM signature to breast involution by parity, and the specific influence of lactation.

_				
D	I٦	n	٠+	c

Seed stocks	not applicable
Novel plant genotypes	not applicable
Authentication	not applicable

Flow Cytometry

Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

X A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Human breast and Murine tissue samples were dissociated into single cell suspension was created using a modified published protocol Savas et al 2018. Adipose content were removed briefly from the mammary glands and the connective tissues were then finely diced into smaller fragments in RPMI1640 containing, 1 mg/ml collagenase type 4 and incubated for 30 minutes at 37C. Digested tissue fragments were teased through a 70um sieve, the sieve irrigated with neat PBS prior downstream analyses (Please refer further to respective tissue processing methods and resources table)

Instrument

BD Symphony A5 or LSR Fortessa X-20 (BD Biosciences, San Diego, CA, USA); 5-laser Cytek Aurora (Cytek Biosciences)

Software

FlowJo Version 10; OMIQ were used for FACS data interpretation and data presentation

Cell population abundance

Bulk RNA Seq, a total of 5x10e3 and blood 1x10e4 T cell fractions were FACS purified. Reanalysis of isolated CD8+ T cell following FACS were assessed for >90% purity of individual samples. total immune counts per gram were presented.

Gating strategy

Gating strategies including preliminary FSC/SSC gates of the starting population were provided in Extended Data Figure 11 legends

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.