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Introduction

• Main issue:

DEMETO employs a depolymerisation reactor based on microwaves. The reactor 
structure, the temperature and the electric field make difficult to measure the mixture 
temperature because sensors would operate under harsh conditions.

• Main goal:

Provide a physical model of the reactor able to estimate the temperature of the mixture 
in order to implement a control chain to supervise the process.

• DEMETO solution:

The solution is based on a state-space model that acts as a kind of simplified FEM. The 
aim is to model the reactor and observe its internal state to observe and forecast the 
behaviour with a defined setup or even to directly control the temperature.
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Structure of the reactor and input
parameters

Particularities of the reactor geometry:

• The reactor has an axisymmetric structure with 5 reaction chambers.

• All axial layer are solid and static materials except for the ‘Processed mixture’ layer and 
the ‘Temperature control fluid’ layer. These materials move axially during the process.

Inputs parameters

• PM1 to PM5: power delivered by the 

magnetrons.

• Mixture speed.

• Fluid speed

• Boundaries conditions (ambient air)
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Thermal model:
From structure to elements

1. The reactor is axisymmetric and its 
structure has a configurable number 
of axial and radial layers.

2. Each layer is meshed radially and 
axially with an adaptive mesh which 
is configurable section by section. 
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3. Each mesh point represents a ring 
shape element with  homogenous 
properties and temperature.

4. The polar integration of the 
elements properties is done 
considering their axial and radial 
coordinates and the resulting contact 
surfaces.
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Thermal model:
Mathematical description of each element

The main equation that governs the heat
exchanges is:

Radial heat exchange (conduction):

Axial heat exchange (cond. & mass flow):

Microwaves and reaction heating:

Tx;y

Adiabatic bahaviour
along the polar axis
(ring geometry)
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ሶ𝑄𝑥;𝑦 = ሶ𝑄𝐸,𝑥;𝑦 + ሶ𝑄𝑟,𝑥;𝑦 + ሶ𝑄𝑎,𝑥;𝑦 − ሶ𝑄𝑟,𝑥+1;𝑦 − ሶ𝑄𝑎,𝑥;𝑦+1

ሶ𝑄𝑎,𝑥;𝑦 =
𝑇𝑥;𝑦−1 − 𝑇𝑥;𝑦

𝑅𝑡ℎ,𝑎,𝑥;𝑦
+ 𝑣𝑎 ⋅ 𝑆𝑎,𝑦 ⋅ 𝑐𝑥;𝑦 ⋅ 𝜌𝑥;𝑦 ⋅ 𝑇𝑥;𝑦−1

ሶ𝑄𝑎,𝑥;𝑦+1 =
𝑇𝑥;𝑦 − 𝑇𝑥;𝑦+1

𝑅𝑡ℎ,𝑎,𝑥;𝑦+1
+ 𝑣𝑎 ⋅ 𝑆𝑎,𝑦 ⋅ 𝑐𝑥;𝑦 ⋅ 𝜌𝑥;𝑦 ⋅ 𝑇𝑥;𝑦

ሶ𝑄𝑟,𝑥;𝑦 =
𝑇𝑥−1;𝑦 − 𝑇𝑥;𝑦

𝑅𝑡ℎ,𝑟,𝑥;𝑦

ሶ𝑄𝑟,𝑥+1;𝑦 =
𝑇𝑥;𝑦 − 𝑇𝑥+1;𝑦

𝑅𝑡ℎ,𝑟,𝑥+1;𝑦

ሶ𝑄𝐸,𝑥;𝑦 =
𝑉𝑥,𝑦
𝑉𝑖

⋅ ሶ𝑄𝑀𝑊,𝑖 + ሶ𝑄𝑅,𝑖 =
𝑉𝑥,𝑦
𝑉𝑖

⋅ ሶ𝑄𝐸,𝑖
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When boundary (radial or axial) touches an element, two conditions change:

• Thermal resistance outside the boundary is considered being null

• A boundary temperature is fixed 

Thermal model:
Domain boundary conditions 

Element without boundary 
conditions 
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Thermal model:
State-space representation and simulation

The mathematical model gives the following equation common for each element:

Main statements:

• All fluids are considered as solids, to consider convection, thermal resistor must be adapted

• Mass flow is considered as constant in order to keep the system linear

With the equation of the system, is possible to build the state-space representation of
the system in the following form:

ቊ
ሶ𝑥 = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑢

Once that the matrix are built, the system is

simulated using Simulink:

⋅ ൭
𝑉𝑥,𝑦
𝑉𝑖

⋅ ሶ𝑄𝐸,𝑖 +
𝑇𝑥−1;𝑦
𝑅𝑡ℎ,𝑟,𝑥;𝑦

+
𝑇𝑥+1;𝑦

𝑅𝑡ℎ,𝑟,𝑥+1;𝑦
+

𝑇𝑥;𝑦+1
𝑅𝑡ℎ,𝑎,𝑥;𝑦+1

+ 𝑇𝑥;𝑦−1 ⋅
1

𝑅𝑡ℎ,𝑎,𝑥;𝑦
+ 𝑣𝑎 ⋅ 𝑆𝑎,𝑦 ⋅ 𝑐𝑥;𝑦 ⋅ 𝜌𝑥;𝑦ሶ𝑇𝑥;𝑦 =

1

𝑚𝑥;𝑦 ⋅ 𝑐𝑥;𝑦
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Thermal model:
Simulation examples

Example N°1:

Magnetrons power: all at 400W

Example N°2:

Magnetrons power:  PM2 and PM4 at 1000W 
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Results and conclusion

• Results validation:

The model has been validated using a FEM standard tool (Ansys FLUENT), which 
considers also radiation and convection phenomena. An error of +/-3[°C] has been 
observed and the dynamic of the model corresponds.

• Temperature control:

This model can be employed to forecast the
temperature or control it in the reaction
chamber after a model reduction procedure.

• Extend to others systems:

This model can be easily be adapted to others
geometries changing the geometry and mesh
definition.
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