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Stars and planets are formed inside dense interstellar molecular clouds, by

processes imprinted on the 3-dimensional (3D) morphology of the clouds. De-

termining the 3D structure of interstellar clouds remains challenging, due to

projection effects and difficulties measuring their extent along the line of sight.

We report the detection of normal vibrational modes in the isolated interstel-

lar cloud Musca, allowing determination of the 3D physical dimensions of the

cloud. Musca is found to be vibrating globally, with the characteristic modes

of a sheet viewed edge-on, not a filament as previously supposed. We recon-

struct the physical properties of Musca through 3D magnetohydrodynamic

simulations, reproducing the observed normal modes and confirming a sheet-

like morphology.

Astronomical objects are seen in two-dimensional projection on the plane of the sky. This is
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particularly problematic for studies of the interstellar medium, because the 3-dimensional (3D)

structure of interstellar clouds encodes information regarding the physical processes (such as

magnetic forces, turbulence and gravity) that dominate the formation of stars and planets. We

seek a solution to this problem by searching for resonant magnetohydrodynamic (MHD) vibra-

tions in an isolated interstellar cloud and by analysing its normal modes. Normal modes have

been used extensively to describe and analyse various systems in the physical sciences, from

quantum mechanics and helioseismology, to geophysics and structural biology. Normal modes

have been observed in the interstellar medium (ISM) in two small pulsating condensations (Bok

globules) located inside two molecular clouds (i.e. dense enough interstellar clouds allowing

the formation of molecular hydrogen) (1, 2). Further applications have been limited, because

molecular clouds usually exhibit a complex morphology including filamentary structures, as a

result of turbulent mixing and shock interaction (3, 4).

Recent wide-field radio observations of molecular clouds (5) have unveiled the presence

of well-ordered, quasi-periodically spaced elongations, termed striations, on the outskirts of

clouds. The thermal dust continuum emission survey of nearby molecular clouds by the Herschel

Space Observatory has shown that striations are a common feature of clouds (6-10), often asso-

ciated with denser filaments (7-11), inside which stars are formed. Complementary polarimetric

studies have revealed that striations are always well-aligned with the cloud’s magnetic field pro-

jected onto the plane of the sky (5,7-12).

From a theoretical perspective, the only viable mechanism for the formation of striations

involves the excitation of fast magnetosonic waves (i.e. longitudinal magnetic pressure waves)

(13). Compressible fast magnetosonic waves can be excited by non-linear coupling with Alfvén

waves (i.e. incompressible transverse waves along magnetic field lines) and/or perturbations

created by self-gravity in an inhomogeneous medium. These magnetosonic waves compress the

gas and form ordered structures parallel to magnetic field lines, in agreement with observations
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of striations (5,7-12).

Once magnetosonic waves are excited, they can be reflected in regions of varying Alfvén

speed (defined as vA = B/
√

4πρ where B is the magnetic field and ρ is the density of the

medium), setting up normal modes, just like vibrations in a resonating chamber. In regions

where striations appear to be unassociated with denser structures (e.g. H I clouds), this res-

onating chamber may be the result of external pressure confinement by a more diffuse, warmer

medium. However, boundaries can also be naturally created in the case of a contracting self-

gravitating cloud as a result of steep changes in density and magnetic field, that in turn lead to

sharp variations in the velocity of propagation of these waves (14). Any compressible fast mag-

netosonic waves excited during the formation of the cloud will then be trapped, thus resulting

in striations in the vicinity of denser structures.

Fast magnetosonic waves travelling in both directions perpendicular to the magnetic field

are coupled (13). By considering a rectangular box the spatial frequencies of normal modes

(knm) are given by:

knm =

√(πn
Lx

)2
+

(πm
Ly

)2
(1)

where the ordered component of the magnetic field is considered to be along the z direction,

and Lx and Ly are the sizes of the box in the x and y directions respectively, whilst n and m are

integers ranging from zero to infinity. By considering a rotation matrix it can be shown that the

spatial frequencies seen in the power spectra of cuts perpendicular to the long axis of striations

are independent of the orientation of the cloud (14).

We analyse these magnetohydrodynamic striations seen in Musca (G301.70-7.16), a molec-

ular cloud located ∼ 150 to 200 pc from Earth (15, 16). Due to its elongated and ordered

morphology, and its low column density (i.e. integrated volume density along the line of

sight), Musca is considered to be the prototype of a filamentary/cylindrical molecular cloud

(9,17-20) which is used as a comparison by many theoretical models. Musca has been mapped

3



by Herschel as part of the Gould Belt Survey (9) and exhibits clear striations oriented perpen-

dicularly to the main body of the cloud. We have re-analysed the archival data (9); Fig. 1

shows the Herschel-Spectral and Photometric Imaging Receiver 250 µm dust emission map of

Musca. We have considered cuts perpendicular to the long axis of striations inside the green

rectangle in Fig. 1 in order to study their spatial power spectra. We have verified that our

selection does not introduce biases by considering cuts perpendicular to the long axis of the

striations and studying their spatial power spectra in other regions as well (14).

The normalized power spectra from each cut and the distribution of the identified peaks

are shown in Fig. 2A and Fig. 2B respectively. From Eq. (1) and assuming Lx is the

largest dimension of the cloud, the smallest possible wavenumber is obtained for (n, m) = (1,

0). Thus, the first peak in Fig. 2B has to correspond to (n, m) = (1, 0) yielding Lx = 8.2 ± 0.3

pc. This value is consistent with the observed size of the cloud on the plane of the sky, which

is variously reported to be from 6.5 to 7.85 pc when scaled to our adopted cloud distance of

150 pc (9,18,21). The second peak could correspond to either (n, m) = (0, 1) or, in the case of a

cylindrical cloud with Lx � Ly (and thus k01 � 1), to (n, m) = (2, 0). However, with Lx ∼ 8 pc,

the (n, m) = (2, 0) peak is expected at k ∼ 0.8 (pc)−1, much higher than the actual location of the

second peak. Thus, this second peak has to correspond to (n, m) = (0, 1). Inserting (n, m) = (0,

1) and the value of the second peak in Eq. (1), the hidden, line of sight dimension Ly is deduced

as 6.2 ± 0.2 pc, comparable to the largest dimension of the cloud. The other normal modes with

their uncertainties determined through error propagation are predicted analytically by inserting

these values for Lx and Ly into Eq. (1) and are over-plotted in Fig. 2B. Therefore, Musca,

previously considered to be a prototypical cylindrical/filamentary cloud, is instead a sheet-like

structure seen edge-on.

In Fig. 2B we plot all the normal modes up to (n, m) = (2, 2). However, we find good

agreement between the predicted wavenumbers and observations up to the first few modes with
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n or m = 4 corresponding to physical scales of the order of 1.6 pc (see Fig. S1). However,

the shape of the cloud is more complicated than an idealized rectangle, exhibiting higher order

structure on smaller scales, so the normal modes may be better modelled using a rectangle with

rounded edges or an ellipse. Thus, Eq. (1) is an approximation that applies only to the normal

modes with small spatial frequencies, i.e. large physical scales. At spatial frequencies higher

than ∼ 2 (pc)−1 the density of normal modes becomes so high that they cannot be identified in

either the observations or the theoretical predictions (the uncertainties overlap for all predicted

modes).

Through ideal (i.e. non-dissipative) MHD simulations including self-gravity (14), we have

constructed a 3D model of Musca, including the dense structure and striations in the low-density

parts. In Fig. 3 we show the column density map from our simulation, which reproduces the

observed dimensions of the cloud. A 3D representation of the volume density of the model

of Musca is shown in Fig. 4. As intuitively expected from the normal mode analysis of the

observations, the shape of the cloud is that of a rectangle with rounded edges.

The maximum column density in the simulation, assuming an edge-on view, is 1.9× 1022 cm−2.

For comparison, the maximum column density derived observationally from the dust emission

maps (9) is ∼ 1.6 × 1022 cm−2. The maximum volume number density in the simulation is ∼

2 × 103 cm−3, high enough for molecules to be collisionally excited and therefore observed

using their rotational emission lines. Molecular line observations of the Musca molecular cloud

are limited to CO, including several isotopologues, and NH3 (17-20); the latter is only observed

towards the densest core of Musca. The number densities required to excite CO and NH3 lines

are ∼ 102 and 103 cm−3 respectively (22) which are easily reached in our simulated model of the

cloud. In contrast to the sheet-like structure, in order to reproduce the observed column density

in any filament-like geometry, the number density has to be of the order of 5 × 104 cm−3 or

higher (18). This value is well above the density threshold for star formation for clouds in the
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Gould - Belt and a density threshold derived specifically for Musca (23). More evident star

formation activity should be observed if Musca was a filament. Moreover, if the 3D shape of

Musca was that of a filament, NH3 would be easily excited and observed throughout the ridge

of the dense structure.

We use a suite of simulations of clouds of different shapes to validate our analysis and verify

that Eq. (1) can be used to extract the correct cloud dimensions (14). In each of our simulations,

the known dimensions of the clouds are recovered by the simulated normal-mode analysis. In

contrast to the distribution of peaks seen in Fig. 2B, in cylindrical clouds (Ly � Lx) the first

few peaks at low spatial frequencies are all multiples of the first peak. The first few peaks

for cylindrical clouds are only due to the largest dimension of the cloud, resulting in a sparser

distribution of peaks than the sheet geometry (see Fig. S4). This is both quantitatively and

qualitatively different to the distribution seen in the Musca data (see Fig. 2), strengthening

the case that the intrinsic shape of Musca is sheet-like. Sheet-like structures are common in

turbulent clouds as they may represent planar-like shocks from processes such as supernova

explosions or expanding ionization regions, or simply result from accretion along magnetic

field lines (4, 24, 25).

For decades, the determination of the 3D shape of clouds has been pursued through sta-

tistical studies (26-28), which do not provide information on a cloud by cloud basis. Other

proposed methods (29, 30) rely on complex chemical and/or radiative processes and thus de-

pend on numerous assumptions. With its 3D geometry now determined, Musca can be used to

test theoretical models of interstellar clouds.
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Fig. 1. The Musca molecular cloud. Herschel 250 µm dust emission map of the Musca
molecular cloud (in mega Jansky per steradian) showing both striations and the dense elongated
structure. The green rectangle marks the region where we have performed our normal-mode
analysis, the blue arrow shows the mean direction of the magnetic field projected onto the plane
of the sky (9). Grid lines show equatorial coordinates.
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Fig. 2. Comparison of observed normal modes with analytical solution. (A) Normalized
power spectra (black lines) of cuts trough the observations perpendicular to the striations; peaks
we identified are marked with red dots. (B) Distribution of peaks at different spatial frequencies.
The red lines depict the values used to derive the dimensions of the cloud. The blue dashed lines
show the rest of the normal modes [up to (n, m) = (2, 0)], predicted analytically from Eq. (1)
given the cloud dimensions derived from the first two peaks. Shaded regions indicate the 1σ
regions of the analytical predictions due to uncertainties in the determination of the location
of the first two peaks, propagated through Eq. (1). The bin size is comparable to the standard
deviations of the points comprising the first two peaks.
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Fig. 3. Column density map of the model of Musca molecular cloud. Edge-on view of the
molecular gas column density from our MHD simulation of a sheet-like structure. The color bar
shows the logarithm of the column density. The purple contour marks the region with N(H2) >
2 × 1021 cm−2 used to identify Musca main, dense filament (9). The magnetic field is along the
z axis and the time of the snapshot since the beginning of the simulation is ∼ 2.7 Myrs.
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Fig. 4. 3D model of Musca molecular cloud. Logarithmic 3D volume density in our MHD
simulation of the Musca cloud. Density isosurfaces are set at 90%, 75%, 70% and 55% of the
logarithm of the maximum number density. Black lines represent the magnetic field.
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Materials and Methods

Observations
We use Level 3 Herschel-Spectral and Photometric Imaging Receiver (31) 250 μm 

dust emission data, obtained directly from the Herschel Science Archive. Observations 
were carried out on 2011 March 13 and 14, at a scanning speed of 30 arcsec s-1. The 
spatial resolution of Herschel at 250 μm is 18 arcsec. We define a Cartesian coordinate 
system where the z axis is aligned with the long axis of the striations and thus the plane-
of-the-sky (POS) magnetic field, as probed by polarization measurements (9), the y axis 
is parallel to the line-of-sight (LOS), and the x axis is perpendicular to the striations on 
the POS.

For deriving the normal modes we select a region south-east of the main filamentary
structure (Fig. 1) and consider cuts along the x axis. Gravity and other effects such as 
shocks resulting from the formation of the cloud will impact the structure of regions 
adjacent to the dense filament. For this reason, the region has been selected based on 
three criteria: a) it is as far away from the dense filamentary structure as possible so that 
additional forces can be ignored compared to the effect of MHD waves b) it has the 
largest possible length so that we can retrieve all spatial frequencies and c) the cuts are 
perpendicular to striations throughout, so that small variations in the orientation angle of 
striations do not affect our results. In order to increase the signal-to-noise ratio in our 
analysis we average the intensity of z pixel values in every three adjacent cuts along the x
direction. We then compute the spatial power spectrum of each averaged cut using the 
Lomb-Scargle periodogram technique (32, 33).

We have verified that increasing the size of the region, selecting a region north of 
the main filamentary structure and the uncertainties in the orientation of striations result 
in only small variations in the derived dimensions. In Fig. S1 we show the normalized 
power spectra (panel A) and a histogram of the identified peaks (panel B) from a region 
north-west of the main dense structure. The range of the x-axis in the right panel was 
increased in order to show the agreement between the theoretical predictions and 
observations for smaller physical scales. In this region, due to the curvature of Musca, 
there is an uncertainty with regard to the orientation angle of striations. In order to 
minimize this effect we also considered cuts at angles (within a range of 6○) other than 
that where the orientation angle of striations peaks. All the cuts had the same length and 
the final distribution shown was constructed from all cuts. The derived dimensions 
remain the same within uncertainties (Lx = 8.4 ± 0.3 and Ly = 6.4 ± 0.4 pc).

The uncertainty in the derived dimensions and in the analytically predicted normal 
modes is calculated from the uncertainty in the spatial frequencies of the first two peaks 
through error propagation. For the uncertainty of these spatial frequencies we take the 
standard deviations of the points comprising each of the first two peaks. The adopted 
distance of Musca in our analysis is 150 pc (15). Earlier estimates placed Musca at 200 
pc (16). Adopting this larger estimate has no effect on the quality of the fitting of normal 
modes from Eq. (1) since this only depends on the relative distance between peaks. 
However, because angular size translates to a different physical scale the derived 
dimensions change to Lx = 10.4 ± 0.4 and Ly = 8.3 ± 0.2 pc.

More disk-like rather than triaxial oblate clouds should exhibit normal modes given 
by:
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where R is a mean radius and jnm are the roots of the derivative of the Bessel function of 
first kind. In the case of Musca, unlike Eq. (1), Eq. (S1) fails to fit the observed modes, 
thus suggesting a more triaxial shape.

Regarding the projection angle, a rotation of the x-y coordinate system around the z-
axis will leave the observed spatial frequencies unchanged:

where kx and ky are the wavenumbers in the x and y directions respectively, θ is the angle 
between the cloud’s y-axis and the LOS and kx  and ʹ ky  are the new wavenumbers in the ʹ x 
and y directions at this new angle θ. Thus, the new observed spatial frequencies (k ) at ʹ
this new angle θ will be:

As a result, the spatial frequencies are independent of the projection angle.
Cautionary remarks

We make two cautionary remarks regarding the method. The first is related to the 
orientation angle of striations. Although striations in Musca and in all clouds are well 
ordered, their orientation angle has a non-zero spread. When the cuts are not 
perpendicular to the striations we are probing the desired scales over cos(ϕ), where ϕ is 
the angle between the cut and the long axis of striations. Thus, each peak in the 
distribution of the spatial frequencies is also expected to have a non-zero spread. The fact
that the orientation angle of striations has a non-zero spread is not an artifact of the 
analysis of the observations but it is to be physically expected because fast magnetosonic 
waves can propagate in directions other than exactly perpendicular to the magnetic field. 
However, these modes ultimately escape the region along field lines.

The second cautionary remark is related to the phase difference between different 
wave modes. For a particular cut, the phase of a wave mode can be such that the 
displacement is zero (or close to zero) and it cannot be retrieved in the power spectrum. 
This can be seen in Figures 2A, S1A and S2A where not all spectra appear to go through 
all peaks. In order to probe all wave modes, a sufficiently large region has to be selected. 
This phase difference arises from the different time scales involved for different modes.
Simulations

We have used the astrophysical code FLASH 4.4 (34, 35) to perform three 
dimensional, ideal MHD simulations with self-gravity in Cartesian coordinates. To solve 
the ideal MHD equations we use the unsplit staggered mesh algorithm (36). This scheme 
has advantages over truncation-error methods and is satisfied at all times to 
machine precision. In the interest of reducing computational cost and because we are not 
interested in the fragmentation of any dense structures created within the cloud we use 
the standard FLASH multipole algorithm to solve Poisson’s equation. To account for all 
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waves that can arise in the MHD equations we use Roe’s solver for the Riemann problem 
(37). To minimize numerical diffusivity we use van Leer’s flux limiter (38) and third 
order interpolation. Because Musca is an isolated cloud, we model it as such by forcing 
normal velocity components to zero at the boundaries. This is achieved by setting all 
boundary types to diode, i.e. non-reflective type of boundaries. Thus, our choice ensures 
that any reflection of waves occurs at boundaries naturally created due to the contraction 
of the cloud and not at the edges of our simulation box. Finally, diode boundary 
conditions ensure there is no mass influx during the evolution of our simulations. 
Simulations have been performed on a fixed resolution grid with 256 × 256 × 256 cells.        
We have verified that numerical resolution does not affect our results by performing 
convergence tests. For exporting simulation data from Hierarchical Data Format, version 
5 we use the “YT” analysis toolkit (39). 3D plots were created using “MAYAVI2”(40).

In our simulations we again define a Cartesian coordinate system such that the 
direction of the ordered magnetic field is along the z direction and y represents the LOS 
dimension. Through the Chandrasekhar-Fermi method (41) and its more updated 
interpretation (42), the ordered value of the POS magnetic field towards the Musca 
molecular cloud has been observationally determined to be 12 ±  5 and 27 ±  11  μG        
respectively (43). These estimates assume a number density of 100 cm-3. We adopt a 
conservative value of 7 μG as an initial condition for our simulations which is within the 
aforementioned observational limits. In all simulations, we additionally introduce a 
perturbation in the x and y components of the magnetic field as:

where Bx and By are the x and y components of the magnetic field, kz =   π /   Lz and δB was 
set equal to 10% of the value of the unperturbed field. This setup implies an Alfvén wave 
passing through the computational box with wavelength twice the size of the z direction. 
A constant temperature of 14 K is used in all simulations. Random perturbations with 
maximum amplitude of 40% of the background value are introduced in density and 
thermal pressure in a self-consistent manner such that the gas remains isothermal. All 
velocity components are initially set to zero in all simulations. Thus, the Alfvén Mach 
number is smaller than one at all times during the evolution of the simulations, which is 
the regime where striations are formed.
3D model of Musca

The initial number density in our simulation is set equal to 100 cm-3. The dimensions
of our simulation box are Lx = 10.0,  Ly = 8.0 and Lz = 3.5 pc. The x and y dimensions of 
the simulation box are thus higher than the values we have derived observationally. 
However, because of contraction due to self-gravity and pinching of the field lines, the 
region where fast magnetosonic waves are trapped is smaller than the simulation box.

In Fig. S2 we show the normalized power spectra (panel A) and the histogram of the
identified peaks (panel B) from striations in this 3D model of Musca, computed from the 
simulated column density map. The derived Lx and Ly dimensions are 7.7 ± 0.1 and 5.6 ± 
0.1 pc respectively, in agreement with the dimensions of the resonating region as 
measured from abrupt changes in the propagating velocity of the waves ( Lx = 7. 6 and       Ly

= 5. 8 pc; see Fig. S3). These values correspond to Fig. 3 when the elapsed time is ~ 2.7        
Myrs, 0.3 Myrs after the dense structure (volume number density of  10 ∼  3 cm-3) has 
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formed. Since the morphology of the dense structure is that of a rectangle with rounded 
edges (Fig. 4), similar to the observations, Eq. (1) applies only to large physical scales.

In Fig. S3 we show the velocity of propagation of fast magnetosonic waves in the 
mid-plane along the y direction. Changes of magnetic field strength along the x direction 
due to pinching of field lines result in variations in the propagation speed and thus define 
boundaries where magnetosonic waves are reflected. In 3D the boundaries resemble a 
square bowl with rounded edges. Fig. S3 shows the region where we performed our 
normal-mode analysis, at a comparable distance from the main dense structure as in the 
observations.
Benchmarking

We have performed an additional simulation considering a filament-like structure 
with different initial conditions for density, in order to benchmark our analysis. However, 
this filament-like simulation does not match Musca. The dimensions of the box of this 
filament simulation are Lx = 6.0, Ly = 2.0 and Lz  = 2.0 pc and the unperturbed value of 
density is set to 200 cm-3. The column density map as well as the normalized power 
spectra are shown in Fig. S4. All peaks are due to and can be fitted by the largest 
dimension of the cloud alone, since the modes from the shortest direction lie at much 
higher spatial frequencies (k > 6 pc-1). Thus, all the peaks shown in Fig. S4B correspond 
to m = 0 in Eq. (1). The normal-mode analysis of striations in the simulation yields Lx = 
4.2 ± 0.1 pc and Ly << Lx, again in agreement with the size of the resonating region.
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Fig. S1. 

Normal modes from a region of striations above the dense cloud. The lines in the left and 
right panels are the same as Fig. 2. The agreement between theoretical predictions and 
observations continues in smaller physical scales.
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Fig. S2. 

Normal modes in our simulated cloud. Panels (A) and (B) are the same as Fig. 2 but from
our numerical simulation of the 3D model of the cloud. 
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Fig. S3.

Boundaries formed in the simulated cloud. Mid-plane map (along the y direction) of the 
propagation speed of fast magnetosonic waves. The propagation speed is clearly higher
above and below the main body of the cloud compared to the edges. The green rectangle 
marks the region within which we take cuts perpendicular to the striations to perform our 
analysis.
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Fig. S4.

Normal modes in a cylindrical simulated cloud. Upper panel: column density map from 
our MHD simulations considering a filamentary/ribbon-like morphology. Lower panel: 
Power spectra of the cuts perpendicular to the striations considering this morphology. 
Lines and symbols are the same as in Fig. 2.
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