
Author Queries
Journal: Proceedings of the Royal Society B

Manuscript: RSPB20180726

As the publishing schedule is strict, please note that this might be the only stage at which you are able to thoroughly
review your paper.

Please pay special attention to author names, affiliations and contact details, and figures, tables and their captions.

The corresponding author must provide an ORCID ID if they haven’t done so already. If you or your co-authors have
an ORCID ID please supply this with your corrections. More information about ORCID can be found at http://orcid.
org/.

No changes can be made after publication.

SQ1 Your supplementary material will be published online alongside your article and on rs.figshare.com exactly as
the file(s) are provided. Therefore, please could you either confirm that your supplementary material is
correct, or – if you have any changes to make to these files – email these along with your proof corrections to
the journal inbox. Your ESM files are listed here for your convenience:

Video S1_ESM.mp4

Figure S1_ESM.docx

Figure S2_ESM.docx

Table S1_ESM.docx

Table S2_ESM.docx

SQ2 Your paper has exceeded the free page extent and will attract page charges.

Q1 Please provide the year details for ‘H.-N.N. personal observation’.

Q2 Please provide author initial and year details for ‘Jacomb et al. unpublished data’.

Q3 Please provide editor(s) name details for refs [20,37].

Q4 Reference [54] is provided in the list but not cited in the text. Please supply citation details or delete the
reference from the reference list.

Q5 Please check the edits made to the part labels in Figure 1.

http://orcid.org/
http://orcid.org/


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

ARTICLE IN PRESS
rspb.royalsocietypublishing.org
Research
Cite this article: Noh H-J, Gloag R, Langmore

NE. 2018 True recognition of nestlings by hosts

selects for mimetic cuckoo chicks. Proc. R. Soc.

B 20180726.

http://dx.doi.org/10.1098/rspb.2018.0726
Received: 1 April 2018

Accepted: 16 May 2018
Subject Category:
Evolution

Subject Areas:
evolution, behaviour

Keywords:
brood parasitism, bronze cuckoo, gerygone,

host defence, chick discrimination, chick

rejection
Author for correspondence:
Hee-Jin Noh

e-mail: heejin.noh@anu.edu.au
Electronic supplementary material is available

online at rs.figshare.com.
& 2018 The Author(s) Published by the Royal Society. All rights reserved.
RSPB20180726—19/5/18—16:34–Copy Edited by: Not M
True recognition of nestlings by hosts
selects for mimetic cuckoo chicks

Hee-Jin Noh1, Ros Gloag2 and Naomi E. Langmore1

1Research School of Biology, Australian National University, RN Robertson Building, 46 Sullivans Creek Road,
Canberra, Australian Capital Territory 2601, Australia
2School of Life and Environmental Sciences, University of Sydney, Macleay Building A12, Science Road, Sydney,
New South Wales 2006, Australia

H-JN, 0000-0003-4937-9093; RG, 0000-0002-2037-4267; NEL, 0000-0003-3368-6697

Brood parasitic cuckoos lay their eggs in other birds’ nests, whereafter the

young cuckoo hatches, ejects its nest-mates and monopolizes the care of

the host parents. Theory predicts that hosts should not evolve to recognize

and reject cuckoo chicks via imprinting because of the risk of mistakenly

imprinting on a cuckoo chick in their first brood and thereafter always reject-

ing their own chicks. However, recent studies have revealed that some hosts

do reject cuckoo chicks from the nest, indicating that these hosts’ recognition

systems either do not rely on first brood imprinting, or use cues that are

independent of chick phenotype. Here, we investigate the proximate mech-

anisms of chick rejection behaviour in the large-billed gerygone (Gerygone
magnirostris), a host of the little bronze cuckoo (Chalcites minutillus). We

find that gerygones use true template-based recognition based on at least

one visual chick trait (the amount of hatchling down-feathers), and that

this is further mediated by experience of adult cuckoos at the nest during

egg-laying. Given the theoretical constraints of acquiring recognition tem-

plates via imprinting, gerygones must possess a template of own-chick

appearance that is largely innate. This true recognition has facilitated the

evolution of very rapid hatchling rejection and, in turn, striking visual

mimicry of host young by little bronze cuckoo chicks.
1. Introduction
Brood parasitic cuckoos impose heavy costs on their hosts, selecting for the

evolution of host defences against parasitism [1–3]. The most widespread

defence is egg rejection, and many hosts have evolved highly refined abilities

to detect and eject eggs that differ in appearance from their own [4,5].

Curiously, however, these same hosts typically fail to reject the parasitic

chicks once hatched, despite the imposters having a clearly distinct phenotype

from the host’s own young [2,6]. Several theoretical solutions to this long-stand-

ing puzzle have been proposed (reviewed in [7]). One explanation is that the

costs of recognition errors may constrain the evolution of learned cuckoo

chick discrimination in hosts wherever cuckoos evict the host eggs from the

nest soon after hatching [8]. Lotem suggested that if hosts learn the appearance

of their own chicks through imprinting on their first brood, a host parasitized

during its first breeding attempt would falsely imprint on the lone foreign

chick as its own young and thereafter reject its own offspring for the rest of

its life [8]. The same problem would not impede the evolution of egg rejection,

because even parasitized hosts are exposed to some of their own eggs during

the egg-laying and incubation phases.

Lotem’s hypothesis provides an explanation for the lack of true learned

recognition of cuckoo chicks (assessment of the match between the template

for a hosts’ own young and the phenotype of the parasite chick) by hosts [8].

However, some hosts have evolved the ability to discriminate cuckoo chicks

using ‘recognition-free’ mechanisms [9–11]. Recognition-free discrimination

involves identifying the parasite chick from cues other than chick phenotype,
entioned

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2018.0726&domain=pdf&date_stamp=
mailto:heejin.noh@anu.edu.au
http://orcid.org/
http://orcid.org/0000-0003-4937-9093
http://orcid.org/0000-0002-2037-4267
http://orcid.org/0000-0003-3368-6697


rspb.royalsocietypublishing.org
Proc.R.Soc.B

20180726

264

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

ARTICLE IN PRESS
thereby avoiding the risk of mis-imprinting [7,10,12]. It has

been shown to be the primary process operating in two

hosts of evicting cuckoos. Hosts of Horsfield’s bronze

cuckoo (Chalcites basalis) use the presence of a lone chick in

the nest and the presence of adult cuckoos in the population

as cues for abandoning parasitized nests [9]. Similarly, reed

warbler (Acrocephalus scirpaceus) hosts of common cuckoos

(Cuculus canorus) cue into the duration of parental care, aban-

doning chicks that remain in the nest for longer than the

typical host nestling period [10]. These studies demonstrate

that recognition-free discrimination provides hosts with a

pathway for cuckoo chick rejection that circumvents the

costs of mis-imprinting. Our aim is to test whether cuckoo

chick discrimination can also evolve through true recog-

nition, despite the theoretical costs of mis-imprinting

proposed by Lotem [8]. One plausible way in which this

could occur is if discrimination is largely innate, rather than

learned [11]. In theory, true recognition has a significant

advantage over some recognition-free mechanisms, because

it can take place immediately upon hatching of the parasite

chick, allowing the host to remove the cuckoo before it

evicts host young. To date, no studies have demonstrated

true recognition of parasite young. However, indirect

evidence for this mechanism in some hosts stems from the

apparent nestling or fledgling mimicry of host young by

cuckoos [13–16]. Just as occurs at the egg stage, selection

for mimicry might arise through host rejection of chicks

with non-matching phenotypes [7,15].

The gerygone (Gerygone spp.) hosts of Australia’s little

bronze cuckoos (Chalcites minutillus) are strong candidates

for using true recognition of chicks. Despite typically suffering

high parasitism rates, gerygones do not reject bronze-cuckoo

eggs [13,14,17]. Instead, gerygones have the most effective

known form of chick rejection because they reject cuckoo

chicks by dragging them out of the nest within hours of hatch-

ing [13,14,18], sometimes succeeding in removing the cuckoo

nestling (a nest-mate evictor) before it has a chance to evict the

host young from the nest. Most Australian bronze-cuckoo

species lay non-mimetic eggs, but their chicks are excellent

visual mimics of host young, with each subspecies matching

the colour of nestling skin, rictal flange and down-feathers

of their favoured host species [15,19,20]. The little bronze

cuckoo is a particularly accurate mimic of host young [15],

and it is unique among cuckoos in displaying multi-barbed

nestling down-feathers, which are typical of passerine nest-

lings including their hosts, but are otherwise unknown in

the cuckoo family [15].

Here, we use experimental manipulations to establish for

the first time the mechanisms by which gerygones recognize

and reject little bronze-cuckoo nestlings. We test for three

non-mutually exclusive recognition-free cues (hatch order,

the presence of an adult cuckoo and discordancy) and one

true recognition cue (nestling down-feathers) that may be

used to facilitate chick rejection. The presence of an adult

cuckoo in the nest’s vicinity has been shown to be an impor-

tant component of chick rejection decisions in another

bronze-cuckoo host [11]. Hatch order is also a possible recog-

nition-free cue [21], because cuckoo eggs typically require a

shorter incubation period and usually hatch 1–2 days

before gerygone young [22]. However, this cue would only

be useful in conjunction with another cue, indicating that

the nest has been parasitized. Recognition by discordancy

involves assessment of the differences between chick
RSPB20180726—19/5/18—16:34–Copy Edited by: Not Mentioned
phenotypes within the same brood and rejection of the least

common phenotype [23,24]. In the absence of true recog-

nition, discordancy might favour visual mimicry of host

young by cuckoos, provided that the cuckoo and host

chicks are present in the nest together prior to rejection,

and that host chicks typically outnumber cuckoos.
2. Material and methods
(a) Study area and species
We carried out our study from August to December 2016 along

creeklines in and around Cairns, Queensland, Australia (168550

S, 1458460 E) on a population of large-billed gerygones (Gerygone
magnirostris) that experiences high rates of parasitism by little

bronze cuckoos (63–65% [17], this study). Little bronze cuckoos

were seen or heard, and parasitism occurred, at all creeks in

the study. The large-billed gerygone builds untidy domed

nests using grass, moss and spiders’ egg-sacks, usually over-

hanging water [25]. Gerygones lay one egg every second day

over a period of 4–8 days (average clutch: mean+ s.e. ¼ 3+
0.09, range: 1–5, n ¼ 100) and start incubation when their

clutch is complete [25]. Cuckoos lay a single egg per host nest,

during or shortly after the hosts’ egg-laying period, and usually

remove one host egg during the same visit. Two or three different

females may lay in the same host nest [17,26]. Hosts mob the

cuckoo if it is detected during laying, but mobbing has not

been observed to prevent parasitism [17].

(b) General experimental methods
We located 54 large-billed gerygone nests during the nest-build-

ing phase by searching along creeks, rivers and lakes. Of these

nests, 35 (65%) were subsequently parasitized by one (n ¼ 30)

or two (n ¼ 5) cuckoos, and 19 were not parasitized. We checked

nest contents daily to allow clutch manipulation as soon as eggs

appeared and before incubation began. From hatching day, we

monitored all 54 nests to determine whether nestling rejection

occurred. Parasitized nests were filmed or observed continuously

from hatching until host chick eviction (by cuckoo chicks) or

cuckoo chick rejection (by host parents) occurred. When cuckoo

chicks evicted host young and became the sole occupant of the

nest, we continuously monitored the nest for at least a further

2 days during daylight hours to document any chick rejection

or nest predation. In total, 19 nests (16 parasitized and three

unparasitized) were monitored from 06.00–07.00 to 17.00–

18.00 by an observer in an hide (approx. 5 m from nest) using

binoculars, 17 nests (16 parasitized and one unparasitized)

were filmed continuously with a video camera (Panasonic,

HC-VX870M) and the remaining 20 nests (three parasitized

and 15 unparasitized) were monitored with daily nest checks

to determine whether any chicks were missing. If a host chick

was missing from an unparasitized nest, we concluded that the

host had rejected the chick. This conclusion is based on the

lack of observations of partial predation in our study site (other

than when an egg was stuck to or embedded in the lining of a

depredated nest) and the fact that nest predation usually results

in nest damage as the predator forces entry into the dome nest. If

a nest check revealed that all chicks in the nest were missing, we

concluded that the nest had been predated. We excluded three

unobserved disappearances of cuckoo chicks from our analyses,

because in each case the cuckoo chick was alone in the nest so we

could not determine whether it disappeared due to ejection or

predation. Three host chicks that died in the nest on the day

after hatching day were excluded from the analysis because we

have no evidence either for or against the idea that dead chicks

were rejected. We calculated ‘Time to Ejection’ to the nearest

day (hatch day ¼ 0 days). In our experiments, we firstly
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manipulated exposure of hosts to an adult cuckoo using a cross-

fostering experiment and then randomly assigned nests to (i) a

hatch-order manipulation experiment, (ii) a feather trimming

experiment or (iii) both the hatch order and the feather trimming

experiment (see electronic supplementary material, figure S1).

(c) Manipulation of opportunity to observe an adult
cuckoo at the nest

To assess whether hosts’ exposure to an adult cuckoo at the nest

influenced chick rejection rates, we cross-fostered cuckoo eggs

from some parasitized nests to unparasitized nests to create

two conditions among nests containing one or two cuckoo

eggs: naturally parasitized, i.e. parents had the opportunity to

observe a cuckoo lay at their nest (nests: n ¼ 22, chicks: n ¼ 25),

and artificially parasitized nests where adults did not see a

cuckoo lay in their nest (nests: n ¼ 13, chicks: n ¼ 15). Two

sources of evidence suggest that parents of naturally parasitized

nests are likely to have had the opportunity to observe a cuckoo

entering the nest. First, we filmed parasitism of the nest on three

occasions and, in every case, the gerygone parents mobbed the

cuckoo [17]. Second, although we cannot be certain that all natu-

rally parasitized hosts observed the cuckoo during parasitism, it

is certain that more gerygones in the ‘naturally parasitized’

group will have seen or interacted with a cuckoo at their nest

than did gerygones in the ‘artificially parasitized’ group.

(d) Manipulation of hatch order and discordancy
Cuckoo eggs usually hatch 1–2 days before host eggs [22]. To

determine the effect of hatch order on chick rejection, we delayed

the hatching of cuckoo eggs (n ¼ 12) by 5 days. We removed each

freshly laid cuckoo egg and stored it in a cool, dark place. We

replaced it temporarily with a non-viable gerygone egg, which

had been collected from a depredated or abandoned nest (depre-

dated nests sometimes contained intact eggs, if they were stuck

to the nest lining). After 2 days of incubation, we removed the

dummy egg and returned the cuckoo egg to the nest, such that

any host eggs in the nest hatched 1–2 days before the cuckoo

chick. As a control, we used the same procedure to remove

and later replace a single gerygone egg from unparasitized

nests (n ¼ 14). Five cuckoo chicks also hatched later than host

young naturally and these were included in the dataset.

When a cuckoo chick or chicks are the minority species in the

brood, hosts may discriminate via discordancy and reject the

most dissimilar chick or chicks. This recognition-free mechanism

requires that cuckoo and host chicks are typically present in the

nest at the same time, and that host chicks reliably outnumber

cuckoos. In combination, our cross-fostering and hatch-order

manipulations varied the composition of chicks in the nest at

the same time and thus allowed us to test for evidence of discor-

dancy as a rejection cue by comparing rejection rates when the

cuckoo chick was (n ¼ 8), or was not (n ¼ 32), the brood’s

minority species.

(e) Manipulation of chick morphology
To assess whether gerygones’ rejection of cuckoo chicks is based

on true recognition, and specifically on the recognition of nest-

ling down-feathers, we manipulated hatchlings’ feathers in a

subset of nests (n ¼ 32). On the day of hatching, we used

nail scissors to trim the down-feathers of either one cuckoo

chick (n ¼ 13, including one naturally naked cuckoo chick) or

one gerygone chick (unparasitized nests: n ¼ 16, parasitized

nests: n ¼ 4) in the nest (figure 1). We compared the rate of rejec-

tion of trimmed chicks with that of chicks that were handled on

hatching day, but did not have their feathers trimmed. We also

counted the number of down-feathers of all chicks on hatch
RSPB20180726—19/5/18—16:34–Copy Edited by: Not Mentioned
day, prior to the manipulation, to quantify natural variation in

feather density and weighed chicks four times (hatching day, 3,

7, and 13 days old) to test whether the manipulation otherwise

affected chick growth.
( f ) Statistical analyses
We used a generalized linear model (GLM) with a binomial dis-

tribution and a logit link using all chicks (full dataset) to assess

parental responses to the chicks (accept/reject) according to

(i) the presence or absence of down-feathers, (ii) hatching

order, (iii) whether or not host was exposed to adult cuckoo

and/or (iv) whether or not a cuckoo chick was in the minority

in the nest. The independent variables were species (cuckoo or

host), the four manipulations (all scored as yes/no: hatched

first, feathers trimmed, naturally parasitized cuckoo visited the

nest and cuckoo chick in the minority), hatching date and the

two-way interactions between these variables. We also tested

the quadratic term for the hatching date because seasonal

trends are often nonlinear, but the result was the same. Initially,

we attempted to run a mixed model controlling for nest identity

as a random effect because there were multiple chicks in each

nest, but this made the model unstable due to the small

number of replicates in each nest. Instead, we ran a binomial

GLM with a logit link function on a reduced dataset comprising

only one experimental chick per nest (reduced dataset) and then

compared the results from the full dataset and the reduced data-

set. Where there was only one manipulated chick in the nest, this

was included in the reduced dataset. If there were two exper-

imental chicks or there was no manipulated chick in the nests,

we selected one chick randomly. In addition, to identify which

of these factors contributed significantly to the time to rejection,

we used a GLM with a binomial distribution depending on

whether or not they were rejected on the day of hatching using

all rejected chicks. The independent variables were the same as

in the former GLM analysis. Owing to the controversy over

whether null hypothesis testing or information theoretic

approaches are better for analysis of experimental studies [27],

we used both methods. We applied a backward-elimination

procedure (tables 1 and 2), and the Akaike Information Criterion

(AIC) was also used to support selection of the final model

(best-fit model) (electronic supplementary material, tables S1

and S2). The results did not differ depending on the approach

used; the significant effects as identified by the backward-elimin-

ation procedure were the same as the best model using AIC. We

also evaluated multicollinearity using the variance inflation

factor (VIF) in the models, and all VIF values were lower than

the suggested threshold (greater than 10; [28]). All statistical

analyses were performed using R, software, v. 3.4.3 [29].
3. Results
Our full dataset (all chicks in experimental nests) included 85

host chicks and 40 cuckoo chicks across 54 nests. During the

course of our experiment, 36 chicks (both host and cuckoo)

were rejected from 32 nests (although host chicks were only

rejected following down-feather manipulations; see below).

We captured nine rejection events on film at eight nests (see

example, electronic supplementary material, Video S1), and

a further five rejection events were observed with binoculars.

The remaining chick rejections by hosts were inferred from

daily nest checks. In all filmed or observed cases, large-billed

gerygones pulled living chicks out of the nests, and the parents

then continued to care for the remaining eggs and nestlings.

Ejected chicks were either dropped just under the nests or

carried up to 3 m from the nest before being dropped.



(a)

(c) (d )

(b)

Figure 1. Photographs of large-billed gerygone and little bronze-cuckoo chicks. (a,c) An untrimmed gerygone (on day of hatching), and an experimental brood
comprising one untrimmed host chick (left) and one trimmed host chick (right, both 3 days old), (b,d ) an untrimmed cuckoo, and an experimental brood comprising
one untrimmed host chick (left) and one trimmed cuckoo chick (right, both on day of hatching Q5).
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(a) True recognition
Chick species and the presence of nestling down-feathers

were significant predictors of their rejection by gerygone

hosts; cuckoos were more likely to be rejected than host

chicks, trimmed chicks more likely to be rejected than

untrimmed chicks in cuckoos and untrimmed host chicks

were never rejected (table 1 and figure 2a). Hosts removed

93% of trimmed cuckoo chicks (13 of 14 chicks) and 56% of

trimmed host chicks (11 of 20 chicks; figure 2a). Among

untrimmed chicks, 50% of cuckoo chicks were rejected

(14 of 28), while untrimmed host chicks were never removed

(n ¼ 65 chicks, figure 2a), and trimming was the only

manipulation that resulted in hosts rejecting their own

chicks. Where cuckoo chicks did not have their down-feathers

manipulated, host parents showed a non-significant tendency

to reject those that had naturally fewer down-feathers

(rejected: mean+ s.e. ¼ 13+ 1.77, n ¼ 14, accepted: mean+
s.e. ¼ 17.07+1.67, n ¼ 14; Student’s t-test: t ¼ 21.67, p ¼
0.1068). Similarly, our results from the reduced dataset

showed that chick species and the presence of down-feathers

were the most significant predictors of rejection (table 1).

The timing of nestling removal further supports a role for

direct species-specific chick cues in gerygones’ rejection

decisions. Cuckoo chicks were more likely to be rejected on

the hatch day than host chicks, but whether or not a chick

was trimmed did not influence the timing of its removal

(table 2). All rejected cuckoo chicks were removed by hosts

within 2 days of hatching, with 56% (14 of 25) and 36%
RSPB20180726—19/5/18—16:34–Copy Edited by: Not Mentioned
(9 of 25) rejected on hatching day and the next day, respect-

ively. Only 8% (2 of 25) were rejected 2 days after hatching

(electronic supplementary material, figure S2). By contrast,

just 18% (2 of 11) of rejected host chicks were ejected on

hatch day, 36% (4 of 11) were removed the day after hatching

and 46% (5 of 11) were rejected 2–3 days after hatching (elec-

tronic supplementary material, figure S2). In the case of

cuckoo chicks, rapid rejection was necessary to preserve the

host young in the nest: when hosts removed cuckoo chicks

on hatch day, none of their own nestlings had yet been

evicted by the cuckoo chick, while those cuckoo chicks

rejected on later days had already removed some or all gery-

gone young (six out of 11).

Finally, we confirmed that hatchling down-feathers vary

under natural conditions in both gerygone and cuckoo young.

On average, large-billed gerygone nestlings had more down-

feathers on the day of hatching (mean+ s.e.¼ 37.35+1.45,

range: 23–68, n ¼ 41, one chick per nest) than little bronze-

cuckoo nestlings (mean+ s.e. ¼ 14.40+1.19, range: 0–29,

n ¼ 38, Student’s t-test: t ¼ 212.226, p , 0.0001). The variation

in the number of down-feathers of gerygone chicks within

the same brood was significantly less than that between

broods (one-way ANOVA: F40,44 ¼ 5.35, p , 0.0001).
(b) Recognition-free cues in host decisions to reject chicks
In naturally parasitized nests in which hatch order was not

manipulated (n ¼ 22), the cuckoo hatched before the host
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Table 2. Effects of experimental treatment on time until rejection for those nests in which hosts rejected a chick. Time to rejection was modelled as a binomial
(hatching day ¼ 0, one or more days post-hatching day ¼ 1) in a GLM with a logit link function and the dataset includes all the rejected cuckoo and host
chicks. Significant p-values are shown in italic.

term effect estimate (s.e.)

95% CI

deviance p-valuesLCI UCI

included species (c) 0.241 (0.403) 20.418 0.9189 45.780 0.008

species (h) 21.792 (0.764) 23.2918339 20.682 — —

excluded trim (y) 20.94225 (0.920) 22.547 0.528 21.095 0.295

hatch order (f ) 0.5416 (0.900) 0.282 0.890 20.368 0.544

exposure to adult cuckoo (y) 21.1376 (0.981) 22.961 0.366 21.508 0.219

discordancy (y) 21.2117 (1.211) 23.652 0.629 21.136 0.287

hatching date 0.010 (0.017) 20.017 0.039 20.368 0.544

species (h) : trim (y) 1.005 (4696) — — 20.000 1

species (h) : hatch order (y) 1.854 — — 22.866 0.091

species : exposure to adult cuckoo (y) 54.95 (21670) — — 0.000 1

species : discordancy (y) 20.54 (4212) — — 22.885 0.089

trim (y) : hatch order (y) 18.820 (5628) — — 21.253 0.263

trim : exposure to adult cuckoo (y) 15.848 (4027.416) — — 20.272 0.602

hatch order (f ) : exposure to adult

cuckoo (y)

16.920 (3810.961) — — 20.624 0.429

hatch order : discordancy (y) 2.117 (24670) — — 21.8052 � 1029 1

exposure to adult cuckoo (y) :

discordancy (y)

55.100 (32090) — — 21.7227 � 1028 1
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chicks in 77% of cases, but based on experimental nests, hatch

order had no significant effect on the probability of chick

rejection (table 1). Whether the cuckoo chick was in the min-

ority in the brood also did not influence chick rejection

decisions (table 1). In addition, hatch order and whether or

not a chick is in the minority in the brood did not affect the

timing of its removal (table 2).

Host’s rejection decisions were influenced in part, how-

ever, by the exposure to adult cuckoos in interaction with

chick phenotype (table 1), with hosts more likely to reject a

cuckoo chick if it had been laid naturally into the nest than

if it had been cross-fostered there from another nest by us

(table 1 and figure 2b). This was clearly evident among the

sample of untrimmed cuckoo chicks; only 18% of untrimmed

cuckoo chicks (two out of 11) from artificially parasitized

nests were ejected, whereas parents that had the opportunity

to observe adult cuckoos laying rejected 69% of untrimmed

cuckoo chicks (11 out of 16; Fisher’s exact probability test:

p , 0.01, figure 2b). However, our results from the reduced

dataset showed that the effect of whether the nest was

parasitized naturally or artificially was trivial (table 1),

presumably due to dataset sample size differences.
1

4. Discussion
Hosts that reject parasite nestlings may do so based either

directly on chick phenotype (true recognition) or on recog-

nition-free cues. True recognition is assumed to be

maladaptive for cuckoo hosts if it relies on an imprinted tem-

plate [8], and previous studies have found experimental
RSPB20180726—19/5/18—16:36–Copy Edited by: Not Mentioned
support only for recognition-free mechanisms [9,10]. Our

results, however, provide the first experimental evidence that

hosts can use true recognition when rejecting foreign nestlings,

as large-billed gerygones regularly rejected nestlings that

differed from their own offsprings’ phenotype due to a lack

of hatchling down-feathers. Gerygones combined this use of

phenotypic cues with at least one additional chick-recognition-

free cue, being more likely to reject cuckoo chicks when they

had the opportunity to witness an adult cuckoo lay in the nest.

(a) Chick rejection based on true recognition
At least to the human observer, the number of down-feathers

present on newly hatched chicks is the most obvious morpho-

logical cue available for discriminating between own and

parasitic young; most host chicks have significantly more

down-feathers than cuckoo chicks. Gerygones too were

confirmed to use this cue in rejection decisions, being

prompted to reject cuckoos, and even some of their own

young, for which down-feathers were artificially removed.

However, trimmed cuckoos were rejected at far higher rates

than trimmed host young, indicating that gerygones use

additional, as yet unidentified, phenotypic cues. The begging

calls of newly hatched chicks were audible to the human ear

(H.-N.N., personal observation Q) and parents frequently made

provisioning visits to the nest before they removed the chicks,

so differences in begging call structure are a possible cue that

warrants further investigation.

True recognition requires that hosts possess an internal

template of the acceptable chick phenotype, to which they

are able to compare cuckoo chicks. Given that to acquire
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above bars depict the exact percentage.
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this template solely through experience with a first brood

would lead to maladaptively high rates of recognition-error

in the host of an evicting cuckoo [8], a gerygone’s template

must have an alternative origin. One possibility is that

chick templates are largely innate, driven by strong selection

for correct identification of own and parasitic young. Such

innate templates could still be refined through experience,

in much the same way as songbirds have an innate template

for their species song that is refined through interactions with

conspecifics [11]. Rejection decisions can then be further

refined through the complementary use of recognition-free

cues (discussed below). The resulting recognition and rejec-

tion system is certainly effective for large-billed gerygones

in our study area, as we never observed the mistaken rejec-

tion of host young (other than those that were trimmed).

Notably, however, Sato et al. [13] reported several cases of

large-billed gerygones rejecting their own nestlings in a

different study population, so it remains unclear whether

low error rates are a general feature of gerygones’ chick rejec-

tion behaviour. Recognition errors are most likely to occur in

situations in which mimicry is highly accurate. In our study

population, mimicry by little bronze cuckoos was imperfect,

because they had fewer nestling down-feathers than

large-billed gerygone nestlings. However, host rejection was

influenced more by the presence/absence of down-feathers

than by the number of down-feathers per se. In addition, we

found lower variation within than between broods in host

down-feather abundance. This suggests that gerygones may

be under selection for low intra-brood variation in the

number of down-feathers to facilitate detection of cuckoo

chicks, in much the same way as some other cuckoo hosts

may experience selection for low intra-clutch variation in

egg phenotype, facilitating detection of cuckoo eggs

[30–33]. Such a process would require either that host and

cuckoo chicks were present in the nest together (which

occurs in a minority of nests) or that hosts remember their

own chick morphology from previous broods.
RSPB20180726—19/5/18—16:36–Copy Edited by: Not Mentioned
Some combination of innate true recognition and more

flexible mechanisms in gerygones’ chick rejection would be

consistent with our understanding of egg rejection mechan-

isms. Egg rejecter species show variation within and

between populations in the form and extent of egg rejection

behaviour [24,34], and individual hosts’ reactions toward

foreign eggs may also vary with conditions or experience

[35]. The existence of both consistent and flexible patterns

of egg rejection behaviour implies that both innate and

learning mechanisms can be involved [34], and many host

species appear to combine one or more variants of the true

recognition process with proximate context-dependent

factors when making rejection decisions [24]. Both egg rejec-

tion and chick rejection thus seem to be complex processes,

using considerable mechanistic variation within and

between species.
(b) Recognition-free discrimination
Gerygones were more than twice as likely to reject a cuckoo

chick if an adult cuckoo had visited the nest during the

egg-laying period than if the nest was parasitized artificially,

indicating that the opportunity to observe or interact with a

cuckoo at the nest strongly influenced rejection behaviour,

as has also been observed in another bronze-cuckoo host

[11]. Moreover, our results showed the strongest effect of

exposure to adult cuckoos in interaction with chick pheno-

type (table 1), suggesting that this cue on its own is not

enough to prompt rejection and must be coupled with cues

from the chicks themselves. This indicates that the combi-

nation of this contextual cue with one or more phenotypic

cues may allow gerygones to substantially reduce the risk

of mistakenly rejecting their own young, particularly given

the accurate host–cuckoo nestling mimicry in this system

[36–39].

Notably, if hosts use the presence of adult cuckoos as a

cue to reject nestling cuckoos, the cue is ‘recognition-free’
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with respect to chick phenotype, but does require the recog-

nition of adult cuckoos. Based on behavioural responses,

large-billed gerygones readily distinguish between adult

cuckoos near their nests, which elicit mobbing, and predators

or harmless species, which do not (Jacomb et al. unpublished

data) [40]. Although it is unknown whether mobbing ever

succeeds in preventing a cuckoo from laying, our results indi-

cate that the recognition of adult cuckoos has an important

role in gerygones’ antiparasite defence, by increasing the

accuracy of chick rejection decisions. Accordingly, our

study provides support for strategy facilitation [41], in

which adaptations at one stage of the evolutionary arms

race (in this case, the egg-laying stage) promote the evolution

of defences at another stage (the nestling stage).

We found no evidence that large-billed gerygones use

two other candidate recognition-free cues: hatch order or

discordancy. A simple ‘reject the odd one out’ rule is useful

only when there are multiple chicks in the nest, and only

one of these is a cuckoo, a condition that is rarely met in

large-billed gerygones owing to the shorter incubation

period of cuckoo nestlings and the small clutch size of gery-

gones. A strategy of ‘reject the first hatched chick’ would, in

theory, be relatively effective for gerygones in ridding them-

selves of cuckoos, particularly if enacted only when adult

cuckoos have been seen at the nest. However, the occurrence

of multiple parasitism in this system (approx. 30% of all para-

sitized nests receive multiple cuckoos eggs [17,42]) reduces

the benefit of such a rule-of-thumb substantially, because

often another cuckoo will simply hatch to take the place of

that rejected.

(c) Implications for cuckoo – host coevolution and
diversification in little bronze cuckoos

Our results provide the first experimental demonstration that

host defences can select for the evolution of nestling mimicry

in a brood parasite. Previous work revealed that the nestlings

of three bronze-cuckoo species are near perfect visual mimics

of the host chicks they exploit [15]. Moreover, one host, the

superb fairy-wren Malurus cyaneus, was less likely to reject

cuckoo chicks of a species that specializes on fairy-wrens

(Horsfield’s bronze-cuckoo C. basalis) than a cuckoo species

that uses fairy-wrens rarely (the shining bronze-cuckoo

Chalcites lucidus) [9]. However, only recognition-free cues

for chick discrimination were identified in this system, so it

was unclear whether host rejection selected for mimicry of

host young [11]. Furthermore, some forms of chick mimicry

might arise for reasons other than host rejection [42], such

as to exploit biases in host–parent communication and

extract the optimal resources from host parents [43]. While

it remains possible that the visual mimicry of little bronze

cuckoos also increases host provisioning rates, it seems

likely that it has been primarily driven by gerygones’ chick

rejection behaviour.

In this study, our focus was demonstrating that true

nestling recognition can evolve, against the predictions of

theory based on an imprinting model of chick rejection [8].

Mis-imprinting constraints are not the only explanation,

however, for the apparent scarcity of chick rejection across

hosts of brood parasites. Effective rejection of cuckoo eggs

can prevent the evolution of cuckoo chick rejection by

making the cuckoo nestling a ‘rare enemy’, such that the

benefits of discriminating against it are outweighed by the
RSPB20180726—19/5/18—16:36–Copy Edited by: Not Mentioned
costs of recognition errors [7,44,45]. Curiously, large-billed

gerygones do not reject foreign eggs even though little

bronze-cuckoo eggs look very different from their own. This

is surprising given that hosts suffer fewer costs of parasitism

by implementing defences early in the breeding cycle rather

than later. Indeed, three non-mutually exclusive explanations

for this are that: (i) egg rejection is constrained by poor visi-

bility inside the nest, because dark-coloured bronze cuckoo

eggs are cryptic inside dark host nests [17,26], (ii) egg rejec-

tion is constrained by bill morphology, because cuckoo eggs

are too large or thick-shelled to be ejected and methods of

egg rejection that remove or abandon whole clutches are

too costly [46–48] and (iii) hosts may benefit by delaying

rejection of the parasite until the chick stage when there is a

risk of multiple parasitism, because allowing the cuckoo

egg to remain in the nest reduces the probability that a host

egg will be removed during subsequent parasitism events

(the egg dilution hypothesis, [17,49]).

Different subspecies of the little bronze cuckoo exploit

different hosts, and cuckoo mimicry of host nestlings can

extend even down to the level of subspecies [50]. For

example, C. m. minutillus mimics the dark skin and white

down of nestling large-billed gerygones [15], whereas

C. m. barnardi mimics the pink skin and yellow down of the

offspring of white-throated gerygones Gerygone albogularis
[19,42]. In addition, the little bronze cuckoo occupies a

wider distribution and has more subspecies than any other

Chalcites cuckoos (10 described subspecies, compared to just

one to four variants of other bronze cuckoos) [51]. Although

the rejection behaviour of other little bronze cuckoo hosts

remains to be studied, it is plausible that the observed

variation in little bronze-cuckoo chicks has evolved in

response to true recognition and chick rejection by their

hosts, ultimately reinforcing reproductive isolation among

cuckoo populations that exploit different host species [52].

Thus, unlike recognition-free mechanisms of chick rejection,

true recognition of cuckoo chicks may have significant

consequences for the coevolutionary trajectory of their para-

sites, by driving host-specific genetic diversification in

parasite populations.
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